• Title/Summary/Keyword: Molar Conductivity

Search Result 60, Processing Time 0.025 seconds

Physical Properties of $LiPF_6/PC+EC+DEC$ Electrolyte by the Variation of PC Fraction and Initial Electrochemical Properties of Carbon Anode in the Electrolyte (PC 비율에 따른 $LiPF_6/PC+EC+DEC$ 전해액의 물리적 특성 및 탄소분극과의 초기 전기화학적 특성)

  • Doh Chil-Hoon;Moon Seong-In;Yun Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.224-231
    • /
    • 2000
  • The exfoliation of graphite (layer) was progressed due to the irreversible insertion of PC molecules between graphene layers, when propylene carbonate (PC) solvent was used as the organic solvents. The problem could be mitigated by the replacement of PC by ethylene carbonate (EC). But, the freezing point of EC-based electrolyte increased due to the high freezing point of $EC(36.2^{\circ}C)$. Therefore, EC+PC mixed electrolyte is expected as a good organic electrolyte for lithium ion battery. The EC-based organic electrolyte containing PC within pertinent quantity can be expected to have high molar conductivity and reduced exfoliation of graphite layer. The dielectric constant and molar conductivity of $LiPF_6/PC+EC+DEC$ electrolyte was investigated with a variation in the PC content. The electrochemical properties of carbon electrode in the electrolyte were also investigated. Molar conductivity and dielectric constant increased linearly by increasing the PC volume fraction in the electrolyte. The results of charge-discharge test for carbon/electrolyte/Li cell indicated that the initial irreversible specific capacity(IIC) of MCMB-6-28s and MPCF3000 decreased by the addition of $0.83 vol\%$ of PC, but increased with PC content over than $0.83 vol\%$. In the case of MPCF3000 and PCG100 having less than $10 vol\%$ PC, IIC was lower than 50 mAh/g. The discharge specific capacities varied with carbon material, but did not vary with PC content in the electrolyte.

Electrical property of organic solvent dispersible poly(3,4-ethylenedioxythiophene) / polymeric ionic liquid complex (유기용제 분산형 poly(3,4-ethylenedioxythiophene) / 고분자 이온성 액체 복합체의 전기적 특성)

  • Lee, Tae-Hee;Kim, Tae-Young;Duong, Ha Thi Thuy;Suh, Min-Won;Kim, Jong-Eun;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.146-147
    • /
    • 2008
  • Poly(3,4-ethylenedioxythiophene) (PEDOT) / poly(1-vinyl-3-ethylimidazolium bis(trifluoromethane sulfonyl)imide) (poly(ViEtIm $^+TFSI^-$) complex was prepared for organic solvent dispersible conductive nano particles. By molar ratio, PEDOT / poly(ViEtIm $^+TFSI^-$) complex was polymerized and dispersed in propylene carbonate by 1 wt%. The maximum conductivity of the complexes was $1.2\times10^{-1}$ S/cm.

  • PDF

Synthesis and Characterization of Molybdenum(V)-Oxo Complexes with ONO-Donors

  • Kim, Jeong Suk;Kim, Hui Jeong;Gu, Bon Gwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.26-29
    • /
    • 1995
  • Six-coordinate molybdenum(Ⅴ)-oxo complexes (PyH)[MoOCl2L] and (R4N)-[MoOCl2L] (R=CH3 and C2H5) with N-salicylidene-2-aminophenol(L1) and its derivatives(L2=5-CH3, L3=3-CH3O, L4=5,6-C4H4 and L5=5-NO2) as ONO-donor ligands have been synthesized and the spectral and electrochemical properties of the complexes by elemental analysis, molar conductivity, UV-vis, IR, 1H NMR and CV have been studied.

A New Detergentless Micro-Emulsion System Using Urushiol as an Enzyme Reaction System

  • Kim, John-Woo-Shik;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.369-375
    • /
    • 2001
  • Urushiol, a natural monomeric oil, was used to prepare a detergentless micro-emulsion with water and 2-propanol The formation of micro-emulsion was verified by conductivity measurements and dynamic light scattering. The conductivity data showed phase change dynamics, a characteristics of micro-emulsions, and subsequent dynamic light scattering study further confirmed the phenomenon. Average water droplet diameter was 10 nm to 500 nm when the molar ratio of 2-propanol ranged from 0.40 to 0.44 . Earlier studies were performed on toluene and hexane, in which the insoluble substrate in water phase was added to the solvents to be reacted on by enzymes. However, in the present urushiol system, urushiol was used as both solvent and substrate in the laccase polymerization of urushiol. The laccase activity in the system was examined using polymerization of urushiol. The laccase activity in the system was examined using syringaldezine as a substrate, and the activity increased rapidly near the molar ratio of 2-propanol at 0.4, where micro-emulsion started. The activity rose until 0.46 and fell dramatically thereafter. The study of laccase activity in differing mole fractions of 2-propanol showed the existence of an ‘optimal zone’, where the activity of laccase was significantly higher. In order to analyze urushiol polymerization by laccase, a bubble column reactor using a detergentless micro-emulsion system was constructed. Comparative study using other organic solvents systems were conducted and the 2-propanol system was shown to yield the highest polymerization level. The study of laccase activity at a differing mole fraction of 2-propanol showed the existence of an ‘optimal zone’ where the activity was significantly higher. Also, 3,000 cP viscosity was achieved in actual urushi processing, using only 1/100 level of laccase present in urushi.

  • PDF

Preparation of Waterborne Polyurethane Coating Solutions with Antistatic Property from Alkali Metal Salts (알카리 금속염으로부터 대전방지용 수분산 폴리우레탄 코팅용액 제조)

  • Hong, Min Gi;Kim, Byung Suk;Lee, Yong Woon;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.427-434
    • /
    • 2012
  • Waterborne polyurethane dispersions (PUD) were synthesized from poly (carbonate diol), isophrone diisocyanate and dimethylol propionic acid at different NCO/OH molar ratios. Subsequently, the PUD was mixed with different types of alkali metal salts ($LiClO_4$, $NaClO_4$, and $KClO_4$) to prepare antistatic waterborne polyurethane coating solutions. Effects of the types and amounts of alkali metal salts were investigated on the surface resistances of the resulting coating films. The surface resistances of coating films were decreased with increasing the amounts of alkali metal salts added in the PUD. The coating films prepared with the same amount of alkali metal salts showed increased ionic conductivity with the order of $LiClO_4$ > $NaClO_4$ > $KClO_4$. Also, the surface resistances of coating films were increased with increasing the molar ratios of NCO/OH in the PUD.

Effect of Substituting B2O3 for P2O5 in Conductive Vanadate Glass

  • Choi, Suyeon;Kim, Jonghwan;Jung, Jaeyeop;Park, Hyeonjoon;Ryu, Bongki
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.140-145
    • /
    • 2015
  • In this study, we verified the relationship among the electrical conductivity, chemical durability, and structure of conductive vanadate glass in which $BO_3$ and $BO_4$ and $V^{4+}$ and $V^{5+}$ coexist simultaneously. We prepared samples of vanadium borophosphate glass with various compositions, given by $50V_2O_5-xB_2O_3-(50-x)P_2O_5$(x = 0 ~ 20 mol%) and $70V_2O_5-xB_2O_3-(70-x)P_2O_5$(x = 0 ~ 10 mol%), and analyzed the electrical conductivity, chemical durability, FT-IR spectroscopy, thermal properties, density, and molar volume. Substituting $B_2O_3$ for $P_2O_5$ was found to improve the electrical conductivity, chemical durability, and thermal properties. From these results, we can draw the following conclusions. First, the electrons shift from the electron rich $V^{4+}$ to the electron deficient $BO_3$ as the $B_2O_3$ content increases. Second, the improvement in chemical durability and thermal properties is attributed to an increase in cross-linked structures by changing from a $BO_3$ structure to a $BO_4$ structure.

Electrical and optical properties of FTO transparent conducting oxide film by spray pyrolysis and its XPS analysis based on F/Sn ratio (분무열분해법에 의하여 제조한 FTO 투명전도막의 F/Sn 비율에 따른 전기, 광학적 특성과 XPS 분석)

  • Song, Chul-Kyu;Kim, Chang-Yeoul;Huh, Seung-Hun;Riut, Doh-Hyung;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.376-381
    • /
    • 2007
  • Fluorine-doped tin oxide (FTO) thin film was coated on aluminosilicate glass at $450^{\circ}C$ by spray pyrolysis method. In the range of 0-2.7 molar ratio of F/Sn, the variations of electrical conductivity and visible light transmission were investigated. At the F/Sn ratio of 1.765, the film showed the lowest electrical resistivity value of $3.0{\times}10^{-4}{\Omega}\;cm$, the highest carrier concentration of $2.404{\times}10^{21}/cm^3$, and about $8\;cm^2/V{\cdot}sec$ of electronic mobility. The FTO film showed a preferred orientation of (200) plane parallel to the substrate. X-ray photoelectron spectroscopy analysis results indicated that the contents of $Sn^{4+}-O$ bonding are the highest at 1.765 of F/Sn molar ratio.

Preparation and Characterization of Proton Conducting Crosslinked Membranes Using Polymer Blends (폴리머 블렌딩을 이용한 수소 전도성 가교형 막의 제조와 그 특성)

  • Kim, Jong-Hak;Lee, Do-Kyoung;Choi, Jin-Kyu;Seo, Jin-Ah;Roh, Dong-Kyu
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.311-317
    • /
    • 2007
  • Proton conducting crosslinked membranes have been prepared by polymer blending, which consist of poly(vinyl alcohol-co-ethylene) (PVA-co-PE) and poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA) at 50 : 50 wt ratio. Two kinds of PSSA-co-PMA copolymer with 3 : 1 and 1 : 1 the molar ratio of PSSA to PMA wereused as a proton conducting source. The ethylene content of PVA-co-PE was also changed as 0, 27 and 44 mol%. The membranes were thermally crosslinked via the esterification reaction between -OH of PVA and -COOH of PMA, as demonstrated by FT-IR spectroscopy (PVA-co-PE)/(PSSA-co-PMA) membranes with 3 : 1 the molar ratio of PSSA to PMA showed higher ion exchange capacity (IEC), lower water uptake and higher proton conductivity than those with 1 : 1 molar ratio. As the PE concentration increased, the IEC values, water uptake and proton conductivities decreased continuously. These properties were elucidated in terms of competitive effect between the concentration of sulfonic acid, hydrophilicity and the crosslinked structure of membranes.

Preparation and characterization of La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ electrolyte using glycine-nitrate process (Glycine nitrate process로 합성된 La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ 전해질의 제조 및 특성평가)

  • Ok, Kyung-Min;Kim, Kyeong-Lok;Kim, Tae-Wan;Kim, Dong-Hyun;Park, Hee-Dae;Sung, Youl-Moon;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Conductivity of LSGMC materials were affected by secondary phase segregation, composition and synthetic route. $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$ (LSGMC) powders were prepared using the glycine nitrate process to produce high surface area and compositionally homogeneous powders. The powders were synthesized with different 0.5, 1, 1.5, 2, 2.5 of glycine/cation molar ratios. A single perovskite phase from the synthesized powders was characterized with X-ray diffraction patterns. The obtained sintered pellets showed the dense grain microstructure. In case of 1.5 molar ratio, its density was higher than the others. The electrical conductivity measured at $800^{\circ}C$ was observed to be 0.131 $Scm^{-1}$. In addition, the linear thermal expansion behavior was indicated between $25^{\circ}C$ and $800^{\circ}C$.

Study of a Conducting Nafion Film-Gold Electrode Actuator (전도성 네피온필름-금 전극층 액츄에이터에 관한 연구)

  • Jung, Won-Chae;Kim, Hyung Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.360-366
    • /
    • 2013
  • For conventional electrical actuators, the materials are mainly made up of metals, which mean they are prone to corrosion and electrical sparking. Replacing these systems with polymer metal composite based materials can be solved both problems. Considering their excellent electromechanical property, low device fabrication cost, light weight, and good electrical conductivity, the actuator based on ionic polymer metal composite (IPMC) was fabricated using Nafion film, NaOH 0.1 molar solution, and Au electrode. IPMCs exhibit good electrostatic property which means they can in principle be used in making actuators based on electromechanical motions. The resistance measurements of Nafion film after soaking in NaOH and deionized water were demonstrated and compared each other. The result of sample soaked in NaOH showed better electrical conductivity than in deionized water. The fabricated IPMC actuator exhibits a large deformation of bending displacement of approximately 9 mm with applied low AC voltage 6.89 V at 2.84 Hz. The result of computer simulation was also very similar and shown as a bending displacement of 8.6085 mm.