• Title/Summary/Keyword: Moisture conditions

Search Result 1,814, Processing Time 0.028 seconds

Estimation of High-Resolution Soil Moisture based on Sentinel-1A/B SAR Sensors (Sentinel-1A/B SAR 센서 기반 고해상도 토양수분 산정)

  • Kim, Sangwoo;Lee, Taehwa;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.89-99
    • /
    • 2019
  • In this study, we estimated the spatially-distributed soil moisture at the high resolution ($10m{\times}10m$) using the satellite-based Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images. The Sentinel-1A/B raw data were pre-processed using the SNAP (Sentinel Application Platform) tool provided from ESA (European Space Agency), and then the pre-processed data were converted to the backscatter coefficients. The regression equations were derived based on the relationships between the TDR (Time Domain Reflectometry)-based soil moisture measurements and the converted backscatter coefficients. The TDR measurements from the 51 RDA (Rural Development Administration) monitoring sites were used to derive the regression equations. Then, the soil moisture values were estimated using the derived regression equations with the input data of Sentinel-1A/B based backscatter coefficients. Overall, the soil moisture estimates showed the linear trends compared to the TDR measurements with the high Pearson's correlations (more than 0.7). The Sentinel-1A/B based soil moisture values matched well with the TDR measurements with various land surface conditions (bare soil, crop, forest, and urban), especially for bare soil (R: 0.885~0.910 and RMSE: 3.162~4.609). However, the Mandae-ri (forest) and Taean-eup (urban) sites showed the negative correlations with the TDR measurements. These uncertainties might be due to limitations of soil surface penetration depths of SAR sensors and complicated land surface conditions (artificial constructions near the TDR site) at urban regions. These results may infer that qualities of Sentinel-1A/B based soil moisture products are dependent on land surface conditions. Although uncertainties exist, the Sentinel-1A/B based high-resolution soil moisture products could be useful in various areas (hydrology, agriculture, drought, flood, wild fire, etc.).

Behavior of Moisture Transmission in Earlywood and Latewood for Cryptomeria japonica -Difference of Moisture Transmission Behavior and Calculation of the Vapor Permeability- (삼(杉)나무의 춘재부(春材部)와 추재부(秋材部)의 투습성(透濕性) -투습성(透濕性)의 차이(差異)와 투습율(透濕率)의 추정(推定)-)

  • Lee, Weon-Hee;Kim, Bung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.21-27
    • /
    • 1992
  • The amount of moisture transmitted under four different humidity conditions was measured in earlywood and latewood for Cryptomeria japonica(LT specimens). The results obtained are summarized as follows. The vapor permeability in eariywood was about three times larger than that of latewood. The vapor permeabilities in earlywood and late wood depended on the average moisture content of the wood. This indicates that moisture transmission is influenced by vapor permeability or vapor-transmission resistance, but the values obtained by experiments do not have great adaptability for practical situations because of changes in the experimental conditions. There fore, it is necessary to know the moisture content along the flow direction in order to explain the moisture transmission of wood. The vapor permeability was calculated using the density in air dried wood. These were then compared with the experimental values. The vapor permeabilities calculated with this density in the radial direction(LR specimen) had a good tendency to agree with the experimental values, but not so in tangential direction(LT specimen).

  • PDF

Adhesive Performance of Waterproofing System on Concrete Substrate with Moisture Condition (콘크리트 표면 함수비에 따른 교면방수재료의 인장접착성능)

  • 박성기;심재원;이병덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.979-984
    • /
    • 2001
  • Poor water-proofing integrity is related to many factors : site procedure, workmanship, weather. substrate conditions, installation(including asphalt application) conditions. The evaluation of adhesive properties tested by concrete surface moisture and asphalt application was based on laboratory test and observations. This report describes the pull-off test results of waterproofing systems currently used for installing and reparing for concrete bridge decks. The test results showed that the moisture condition fully affected the adhesive properties of sheet membranes and sealer but partially for liquid membranes.

  • PDF

A Study on the Performance Evaluation of Moisture Transfer in Clothing under Wearing Conditions -Evaluation by Covaltous Chloride Method- (의복 착용시 의복의 수분전달성능 평가에 대한 연구 -염화 코발트 법을 이용한 평가-)

  • 홍경희
    • Journal of the Korean Home Economics Association
    • /
    • v.27 no.4
    • /
    • pp.41-50
    • /
    • 1989
  • Cobaltous Chloride method has been known as a sufficiently good test methodolgy for the dynamic moisture transfer through textile fabrics. In the current study, Cobaltous Chloride method was adopted and modified to test dynamic moisture transfer in clothing under actual wearing conditions. It was possible to test the significant difference between fabric types by controlling the position of CoCl2 impregnated swatch (LD type), time scale of the moisture transfer (within 10 mins), experimental design (split plot desing) and other miscellaneous experimental techniques. As results, it was concluded that Cobaltous Chloried method is a satisfactory screening test to predict moisture related comfort properties of clothing as won.

  • PDF

Change in concentration and bioactivity of soil-applied pretilachlor under various soil moisture conditions (다양한 토양수분조건에 처리한 pretilachlor의 농도 및 활성 변화)

  • Lee, Do-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.81-85
    • /
    • 1999
  • Concentration change of soil-applied pretilachlor (2-chloro-2',6'-diethyl- N-2-propoxyethyl)-actanilide) was investigated under upland condition with various soil moisture contents ranging from 50 to 80%(water content by weight). Following pretilachlor from each soil solution was extracted by centrifugation using double tubes, its concentration was determined by HPLC. Pretilachlor concentration in the soil solutions were almost the same under various soil moisture conditions. However, the total amount of pretilachlor increased as the soil moisture content increased. With increasing soil moisture content, the bioactivity of soil-applied pretilachlor on inhibiting the growth of Echinochloa ultilis Ohwi et Yabuno and the absorption of $^{14}C$-pretilachlor in its plants were also enhanced. Our results demonstrate that the absorption of pretilachlor in plants varies with soil moisture content and thus the bioactivity of soil-applied pretilachlor on inhibiting plant growth is different under various soil moisture conditions at the same dosage based on air-dried weight.

  • PDF

Studies on the Preparation of Digestive Enzyme Tablest (IV) (소화효소제(消化酵素劑)의 제조(製造)에 관(關)한 연구(硏究) 제4보(第4報))

  • Kim, Yong-Bae;Kim, Whan-Hoe;Yi, Pyong-Kuk;Shin, Hyun-Jong
    • Journal of Pharmaceutical Investigation
    • /
    • v.8 no.4
    • /
    • pp.23-36
    • /
    • 1978
  • Since the active center of digestive enzymetic preparations, while under storage, lose their activity and potency by the exposure to moisture, colorization, solidifying and other physical changes. It is more important than beautiful package form that protected packaging form from moisture to get a pharmaceutical safety preparations and to maintain a definite potency. Then, in order to get a desirable conditions of storage and packaging, we used shellac and $AEA^{\circledR}$ as a coating base, and blister package, foil and bottle container as a packaging material. Temperature were set on room temperature and $37^{\circ}C$, moisture was adjusted to 40% RH and 80 % RH as a accelerated conditions. Accelerated test was carried out 6 times. The results are as follows: 1) The effect of packaging conditions give great influence on the maintenace of the stable potency. 2) Best result was produced with bottle container package. 3) $AEA^{\circledR}$ is more useful than shellac as a coating base of prevention from moisture. 4) Absorption of moisture gave considerable effects on potency and it has a limited point. 5) Difference in potency between optimal and worst condition is 472 u/2T, and difference in effective period is about 44 months.

  • PDF

Effects of Extrusion Conditions on the Physicochemical Properties of Extruded Red Ginseng

  • Gui, Ying;Gil, Sun-Kuk;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The effects of variable moisture content, screw speed and barrel temperature on the physicochemical properties of red ginseng powder extrudates were investigated. The raw red ginseng powders were processed in a co-rotating intermeshing twin-screw extruder. Primary extrusion variables were feed moisture content (20 and 30%), screw speed (200 and 250 rpm) and barrel temperature (115 and $130^{\circ}C$). Extruded red ginseng showed higher crude saponin contents (6.72~7.18%) than raw red ginseng (5.50%). Tested extrusion conditions did not significantly affect the crude saponin content of extrudates. Increased feed moisture content resulted in increased bulk density, specific length, water absorption index (WAI), breaking strength, elastic modulus and crude protein content and decreased water solubility index (WSI) and expansion (p<0.05). Increased barrel temperature resulted in increased total sugar content, but decreased reducing sugar content in the extrudate (p<0.05). Furthermore, increased barrel temperature resulted in increased amino acid content and specific length and decreased expansion and bulk density of extrudates only at a higher feed moisture content. The physicochemical properties of extrudates were mainly dependent on the feed moisture content and barrel temperature, whereas the screw speed showed a lesser effect. These results will be used to help define optimized process conditions for controlling and predicting qualities and characteristics of extruded red ginseng.

Enzymatic Treatment of Polyamide Fiber by Alcalase (알칼라제를 이용한 폴리아미드 섬유의 효소가공)

  • Song, Yu-Sun;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.8
    • /
    • pp.1006-1013
    • /
    • 2011
  • An enzymatic treatment method using alcalase was introduced to improve the moisture characteristic of the polyamide fiber. The alcalase treatment conditions such as the pH, treatment temperature, enzyme concentration, and treatment time were optimized by measuring the amino groups. The changes in the weight loss, tensile strength, moisture regain, water contact angle (WCA), and water absorption rate of the polyamide fiber with the changes in the alcalase treatment conditions were evaluated. The optimum alcalase treatment conditions for polyamide fiber were found to be a treatment temperature of 50oC, a treatment time of 50 minutes, an alcalase concentration of 10% (owf), and a pH of 7.0. The ethylenediaminetetraacetic acid (EDTA) and L-cysteine accelerated the activity of the enzyme; however, they did not have an effect on the amino group production of the fiber surface. The alcalase treatment of the polyamide fiber improved the fiber's moisture regain, WCA, and absorption rate due to the amino group on the fiber surface. The results showed that the alcalase treatment of polyamide fiber is an effective method to improve the moisture characteristic of the polyamide fiber.

Watershed Scale Drought Assessment using Soil Moisture Index (토양수분지수를 이용한 유역단위 가뭄 평가)

  • Kim, Ok-Kyoung;Choi, Jin-Yong;Jang, Min-Won;Yoo, Seung-Hwan;Nam, Won-Ho;Lee, Joo-Heon;Noh, Jae-Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.6
    • /
    • pp.3-13
    • /
    • 2006
  • Although the drought impacts are comparably not catastrophic, the results from the drought are fatal in various social and economical aspects. Different from other natural hazards including floods, drought advances slowly and spreads widely, so that the preparedness is quite important and effective to mitigate the impacts from drought. Soil moisture depletion directly resulted from rainfall shortage is highly related with drought, especially for crops and vegetations, therefore a drought can be evaluated using soil moisture conditions. In this study, SMI (Soil Moisture Index) was developed to measure a drought condition using soil moisture model and frequency analysis for return periods. Runs theory was applied to quantify the soil moisture depletions for the drought condition in terms of severity, magnitude and duration. In 1994, 1995, 2000, and 2001, Korea had experienced several severe droughts, so the SMI developed was applied to evaluate applicability in the mid-range hydrologic unit watershed scale. From the results, SMI demonstrated the drought conditions with a quite sensitive manner and can be used as an indicator to measure a drought condition.

Compression Behavior of Wood Stud in Light Framed Wall as Functions of Moisture, Stress and Temperature

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.19-28
    • /
    • 2006
  • There has been considerable research in recent times in light-timber med structures in fires. These structures have included horizontal (floor-like) panels in bending and walls under eccentric and approximately concentric vertical loading. It has been shown that compression properties are the most dominant mechanical properties in affecting structural response of these structures in fire. Compression properties have been obtained by various means as functions of one variable only, temperature. It has always been expected that compression properties would be significantly affected by moisture and stress, as well. However, these variables have been largely ignored to simplify the complex problem of predicting the response of light-timber framed structures in fire. Full-scale experiments on both the panels and walls have demonstrated the high level of significance of moisture and stress for a limited range of conditions. Described in this paper is an overview of these conditions and experiments undertaken to obtain compression properties as a functions of moisture, stress and temperature. The experiments limited temperatures to $20{\sim}100^{\circ}C$. At higher temperatures moisture vaporizes and moisture and stress are less significant. Described also is a creep model for wood at high temperatures.