• Title/Summary/Keyword: Moisture Desorption

Search Result 75, Processing Time 0.023 seconds

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Desorption EMC/ERH of Soybean (콩의 탈습 평형함수율/평형상대습도)

  • Choi, Byoung-Min
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.74-78
    • /
    • 2008
  • Desorption experiments were carried out on soybean (Taegwang) at 5, 15, 25, 35, $45^{\circ}C$ for moisture contents between 6.74 and 28.87%(db). The method employed was to measure the equilibrium relative humidity (ERH) of air in contact with the grain under static conditions, using an electronic hygrometer. The effects of temperature and moisture contents were investigated, and the measured values were fitted to the modified Henderson, the modified Chung-Pfost, the modified Halsey, the modified Oswin and the modified GAB model. The ERHs of soybean under the moiture content of 16.67%(db) decreased with an decrease in moisture content and temperature, but the ERH of the moisture content of 28.87%(db) material decreased with an increase of temperature. The modified GAB model was the best in describing the EMC/ERH of soybean.

Change in Weight, Moisture Content, and Dimension at the Early Stage of Adsorption-desorption of Polyethylene Glycol-treated Woods (PEG처리재의 초기 흡·탈습과정에서 중량, 함수율 및 치수 변화)

  • Kwon, Gu-Joong;Kim, Nam-Hun;Chun, Kun-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.497-504
    • /
    • 2009
  • The characteristic changes in weight, moisture content, and dimension at the early adsorptiondesorption stage of PEG-treated Korean pine (Pinus koraiensis), Japanese larch (Larix kaempferi), mongolian oak (Quercus mongolica) and sargent cherry (Prunus sargentii) woods were investigated. The wood samples were treated with PEG 1000, 2000 and 4000, and conditioned at the relative 98%, 65% and 20% for humidities of one week. The weight of Korean pine, Japanese larch and sargent cherry woods treated with PEG 1000 and 2000 during the adsorption-desorption was significantly changed, but mongolian oak was slightly changed. Moisture content was highly Moisture content was highly fluctuated by the change of relative humidity in the three species except oak wood. Although the weight of PEG-treated wood; however, changes in dimension could be prevented by PEG treatment in all species tested.

Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates

  • Khodjet-Kesb, M.;Adda bedia, E.A.;Benkhedda, A.;Boukert, B.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • The Poisson ratio reduction of symmetric hygrothermal aged $[{\theta}_m/90_n]_s$ composite laminates containing a transverse cracking in mid-layer is predicted by using a modified shear-lag model. Good agreement is obtained by comparing the prediction models and experimental data published by Joffe et al. (2001). The material properties of the composite are affected by the variation of temperature and transient moisture concentration distribution in desorption case, and are based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution give rise to the transient Poisson ratio reduction. The obtained results represent well the dependence of the Poisson ratio degradation on the cracks density, fibre orientation angle of the outer layers and transient environmental conditions. Through the presented study, we hope to contribute to the understanding of the hygrothermal behaviour of cracked composite laminate.

Equilibrium Moisture Content of Korean Ginseng (인삼(人蔘)의 평형함수율(平衡含水率)에 관(關)한 연구(硏究))

  • Choi, B.M.;Lee, J.H.;Park, S.J.;Kim, C.S.;Rhee, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.3
    • /
    • pp.247-259
    • /
    • 1992
  • This study intended to measure the desorption and adsorption EMC of four years old Peeled ginseng, Unpeeled ginseng and Taegeuk ginseng under various conditions$20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$) and five levels of relative humidity from 31% to 88%) by the static method. Four widely used EMC models were selected and evaluated. Also the empirical model was evaluated. The results are summarized as follows ; 1) EMC difference between ginseng size was not found but found between ginseng species. EMC difference between Peeled ginseng and Unpeeled ginseng was not found. EMC of Peeled ginseng and Unpeeled ginseng was higher than that of Taegeuk ginseng. 2) The hysteresis, which is difference between desorption and adsorption EMC, was found. Desorption EMC was higher than adsorption EMC. The hysteresis at the same temperature decreased as relative humidity increase. The difference of hysteresis between Peeled ginseng and Unpeeled ginseng was not large and the hysteresis of Taegeuk ginseng was smaller than those of other species. 3) Among the selected models, Henderson model was the best to predict the adsorption EMC of White ginseng(Peeled and Unpeeled ginseng), and Oswin model was the best to predict the desorption EMC of White ginseng and the desorption and adsorption EMC of Taegeuk ginseng. The models are as follows ; (a) White ginseng(Peeled and Unpeeled ginseng) ${\circ}$ Desorption EMC(Oswin model) : $$M=(0.1272-0.0007420T){\cdot}[RH/(1-RH)]^{(0.4164+0.001368T)}$$ ${\circ}$ Adsorption(Henderson model) : $$1-RH={\exp}[-0.0003480T_k\;{M_o}^{0.9231}]$$ (b) Taegeuk ginseng ${\circ}$ Desorption EMC(Oswin model) : $$M=(0.1051-0.0008439T)[RH/(1-RH)]^{(0.4553+0.003425T)}$$ ${\circ}$ Adsorption EMC(Oswin model) : $$M=(0.08247-0.0007559T){\cdot}[RH/(1-RH)]^{(0.5760+0.005540T)}$$ 4) The developed empirical models could predict the desorption and adsorption EMC for White and Taegeuk ginseng more precisely than selected models. The empirical models are as follows ; (a) White ginseng(Peeled and Unpeeled ginseng) ${\circ}$ Desorption EMC : $$M=0.124-0.000647T-0.216RH+0.373RH^2$$ ${\circ}$ Adsorption EMC : $$M=0.0879-0.000663T-0.197RH+0.399RH^2$$. (b) Taegeuk ginseng ${\circ}$ Desorption EMC : $$M=0.159-0.000728T-0.429RH+0.565RH^2$$ ${\circ}$ Adsorption EMC : $$M=0.123-0.000662T-0.384RH+0.555RH^2$$.

  • PDF

유류오염 토양의 복원을 위한 열탈착 처리기술

  • 유동준;김영웅;박용규;오방일;구자공
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.111-114
    • /
    • 2001
  • Thermal desorption process is valuable for the remediation of oil contaminated site. The system is physical separation process by volatizing oil contaminants from soil matrixes and is not designed to provide high levels of oil destruction. The process is not incineration, because the decomposition of oil materials is not the desired result, although some decomposition may occur. The physical and chemical properties that influence the design and operation of the system include boiling points, soil sorption characteristics, aqueous phase solubility, thermal stability, contaminating oil concentration, moisture contents, particle size distribution and etc.

  • PDF

DRYING CHARACTERISTICS OF RANGOLA GRASS

  • Lu, Fu-ming;Kung, Hsiang-chin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.886-895
    • /
    • 1996
  • To fit the desorption isotherm and adsorption isotherm for Pangola grass, the modified Henderson model, Chung-Pfost model, modified Halsey model, and modified Oswin model were used to fit the experimental EMC /ERH data. A step-by -step ERH measuring technique was used in this study. The ERH data were collected at three temperature levels of 5 $^{\circ}C$, $25^{\circ}C$ and 5$0^{\circ}C$ for Pangola grass whole plant, stem , and foliage. The modified Halsey model has the best fit for both desorption isotherm and adsorption isotherm of Pangola grass whole plant as compared with other models.

  • PDF

Minimum Specific Airflow Rate Requirements for Natural Air Drying of Rough Rice in Korea (벼 상온통풍건조의 최소풍량비에 관한 연구)

  • 금동혁;박선태
    • Journal of Biosystems Engineering
    • /
    • v.21 no.1
    • /
    • pp.60-71
    • /
    • 1996
  • The purposes of this study were to develop a simulation model and to determine minimum specific airflow rate requirements for natural air drying of rough rice in Korea. A simulation model was developed considering energy and mass balances within grain bed, drying and rewetting rates, and hysterisis effect between sorption and desorption isotherms. As the results of validation test, the moisture contents predicted by the model agreed very well with the actual data. The criteria for determining minimum specific airflow rate requirements was that the top loom layer in the bin be dried to a moisture content below 16 percent wet basis with less than 0.5% drymatter decomposition. The minimum specific airflow rate requirements in 13 locations of Korea were presented based on the worst one among the past 7 to 13-year weather data. These requirements were also presented for all the combinations of three harvest dates and four harvest moisture contents. Specific airflow rate requirements seemed to be half by each 2 percent reduction in moisture content from 24 percent. As harvest date was delayed by 10 days from October 1, these requirements were reduced by about 20 to 40 percent.

  • PDF

Evaluation of Humidity Control Ceramic Board Using Gypsum Binder (석고계 바인더를 활용한 습도도절 세라믹 보드의 특성 평가)

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.62-67
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than bentonite and zeolite. The flexible strength of the gypsum board decreased with an increasing amount of porous material, and the flexible strength was lowest when active clay with a higher specific surface area than others porous materials was added. The specific surface area and total pore volume of ceramic boards containing porous material were highest at $102.25m^2/g$, $0.142cm^3/g$, respectively, when the active clay was added. In addition, as the amount of added porous materials increased, the specific surface area and total pore volume of the ceramic board increased, but the average pore diameter decreased. The addition of s porous materials with a high specific area and a large pore volume improved the moisture absorptive and desorptive performance of the ceramic board. Therefore, in this experiment, the moisture absorptive and desorptive properties were the best when active clay was added. Furthermore, as the amount of added porous materials increased, the moisture absorptive and desorptive properties improved. When 70 mass% of active clay was added to ${\alpha}$-type gypsum, the hygroscopicity was the highest, about $300g/m^2$, in this experiment.

Evaluation of Humidity Control Ceramic Paint Using Gypsum Binder

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.74-79
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than those of bentonite and zeolite. It was effective to add white cement as well as a retarding agent to control the setting time of the ceramic paint. As the amount of added porous materials increases, the specific surface area and total pore volume of ceramic paint increase, but the average pore diameter decreases. The addition of porous materials having a high specific area and a large pore volume improves the moisture absorptive and desorptive performance of the ceramic paint. Therefore, in this experiment, the moisture absorptive and desorptive properties were best when active clay was added. Also, as the added amount of porous materials increases, the moisture absorptive and desorptive properties improve. In this experiment, when 70 mass% of active clay was added to ceramic paint, the hygroscopicity was highest at about $80g/m^2$.