• Title/Summary/Keyword: Mohr-Coulomb 파괴조건

Search Result 38, Processing Time 0.022 seconds

Reliability Analysis of Plane Stress Element According to Limit State Equations (한계상태방정식에 따른 평면응력요소의 신뢰성해석)

  • Park, Seok Jae;Choi, Wae Ho;Kim, Yo Suk;Shin, Yeong-Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • In order to consider statistical properties of probability variables used in the structural analysis the conventional approach using the safety factor based on past experience usually estimated the safety of a structure Also the real structures could only be analyzed with the error in estimation of loads material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis Safety of structure could not precisely be appraised by the traditional structural design concept Recently new aproach based on the probability concept has been applied to the assessment of structural safety using the reliability concept Thus the computer program by the Probabilitstic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. Verification of the reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. The proper failure criterion according to characteristic of materials must be used for safe design.

  • PDF

The Evaluation of Interface Shear Strength Between Geomembrane and Ceotextile (지오멤브레인/지오텍스타일의 접촉 전단강도 평가)

  • 서민우;박준범;김운영
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.79-89
    • /
    • 2002
  • Various geosynthetics used as liners or protection layers are installed in the solid waste landfills. The interface shear strength between geosynthetics installed at the slope of the landfill is a very important variable for the safe design of the bottom and cover systems in the solid waste landfills. The interface shear strength between Geomembrane and Geotexile is estimated by a large direct shear test in this study, The effects of normal stress, water existing between geosynthetics and surface condition of Geomembrae, i.e. smooth or textured, were investigated. The test results show that the effect varied depending on the level of normal stress and the type of geosynthetic combinations. The shear strength was evaluated by the Mohr-Coulomb failure criterion in this research. The shear strength parameters obtained from tests considering the site specific conditions such as normal stress, dry or wet, and surface condition of geosynthetic should be applied to the design of geosynthetics installed at the slope of the landfill to construct a safe solid waste landfill.

Earth Pressure Analysis of Tunnel Ceiling according to Tunnel Plastic Zone (터널 소성영역에 따른 터널 천단토압 해석)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.753-764
    • /
    • 2020
  • In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect.

Three-dimensional Finite Element Studies of the Behavior of Short Pile Subjected to Lateral Load near a Sandy Slope (모래사면에 설치된 수평하중을 받는 짧은 말뚝의 거동에 관한 3차원 탄소성 유한요소해석)

  • ;Ugai Keizo;Wakai Akihiko
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.41-50
    • /
    • 2001
  • 본 연구는 모래사면의 언덕근처에 설치된 짧은 말뚝의 수평하중의 영향에 관한 것이다. 3차원 탄소성 유한요소법해석과 실내 모형실험의 결과를 비교하였다. 경사 30$^{\circ}$의 사면에 시공된 짧은 말뚝의 특성을 파악하기 위해, 사면언덕에서 모형말뚝까지의 거리를 3종류로 상이하게 하여, 모형실험을 실시하였다. 사용된 모래의 지반특성은 배수조건하의 삼축압축실험으로 결정하였다. 동시에 3차원 탄소성 유한요소법에 의한 수치해석결과와 모형실험결과를 비교하였다. 본 유한요소법의 해석에 있어서 모래지반을 탄성완전소성모델(Elastic-perfectly plastic model)로 가정하여, 파괴기준으로 Mohr-Coulomb 식과 소성 포텐셜에 대해서는 Drucker-Prager 식을 적용한 MC-DP 모델로 하였다. 이러한 MC-DP 모델의 구성식은 유한요소법에서 있어 계산치의 수렴에 유익하다. 3차원 탄소성 유한요소법에 의한 수치해석이 사질토 사면의 언덕 부근에 설치된 단하의 수평거동에 대한 파악에 유효하다는 것을 확인하였다.

  • PDF

Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator (TOUGH2-MP/FLAC3D를 이용한 한국형 기준 처분시스템에서의 열-수리-역학적 복합거동 특성 평가)

  • Lee, Changsoo;Cho, Won-Jin;Lee, Jaewon;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.183-202
    • /
    • 2019
  • For design and performance assessment of a high-level radioactive waste (HLW) disposal system, it is necessary to understand the characteristics of coupled thermo-hydro-mechanical (THM) behavior. However, in previous studies for the Korean Reference HLW Disposal System (KRS), thermal analysis was performed to determine the spacing of disposal tunnels and interval of disposition holes without consideration of the coupled THM behavior. Therefore, in this study, TOUGH2-MP/FLAC3D is used to conduct THM modeling for performance assessment of the Korean Reference HLW Disposal System (KRS). The peak temperature remains below the temperature limit of $100^{\circ}C$ for the whole period. A rapid rise of temperature caused by decay heat occurs in the early years, and then temperature begins to decrease as decay heat from the waste decreases. The peak temperature at the bentonite buffer is around $96.2^{\circ}C$ after about 3 years, and peak temperature at the rockmass is $68.2^{\circ}C$ after about 17 years. Saturation of the bentonite block near the canister decreases in the early stage, because water evaporation occurs owing to temperature increase. Then, saturation of the bentonite buffer and backfill increases because of water intake from the rockmass, and bentonite buffer and backfill are fully saturated after about 266 years. The stress is calculated to investigate the effect of thermal stress and swelling pressure on the mechanical behavior of the rockmass. The calculated stress is compared to a spalling criterion and the Mohr-Coulumb criterion for investigation of potential failure. The stress at the rockmass remains below the spalling strength and Mohr-Coulumb criterion for the whole period. The methodology of using the TOUGH2-MP/FLAC3D simulator can be applied to predict the long-term behavior of the KRS under various conditions; these methods will be useful for the design and performance assessment of alternative concepts such as multi-layer and multi-canister concepts for geological spent fuel repositories.

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.