• Title/Summary/Keyword: Moho

Search Result 55, Processing Time 0.033 seconds

Recognition by Occupational Therapists in Korea of the Model of Human Occupation (MOHO) and Its Necessity (인간작업모델(MOHO)에 대한 국내 작업치료사의 인식도와 필요성에 대한 연구)

  • Jong-Min Lee;Ji-Hoon Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.2
    • /
    • pp.77-87
    • /
    • 2024
  • Purpose : The study aim was to determine the present state of occupational therapists in Korea in terms of the Model of Human Occupation (MOHO). We collected basic data for future research by investigating recognition by occupational therapists for applications of the MOHO and the necessity thereof. Specifically, we explored ways to effectively apply the MOHO in occupational therapy. Methods : We conducted a study from December 3, 2023, to January 18, 2024. A survey was administered to 163 occupational therapists. The general characteristics, recognition, and necessity of the MOHO were examined using a frequency analysis and descriptive statistics. Results : The most responses to "degree of ease of access to the MOHO information" were for "disagree" 56 people(34 %). Regarding "degree of satisfaction with information about [the] MOHO," 53 people (33 %) responded with "disagree" (the highest response rate). Only 22 % had applied the MOHO previously. Second, occupational therapists thought that the MOHO should be applied in occupational therapy clinical practice; they also believed that related education was needed for occupational therapy university/college students and occupational therapists. In response to the question, "What channels do you think MOHO education will be helpful for?", 118 people (32 %) answered "continuing education at the association level," and 86 people (23 %) answered "educational institutions aimed at MOHO." Conclusion : Based on these results, I recommend the following. For application of the MOHO in occupational therapy clinical practice, an occupation-based concept must first be established. In addition, related knowledge must be acquired through the expansion of education regarding the MOHO. The efficient application of the MOHO will ultimately lead to improvement in the health of clients.

Moho Depth Variation and Vp/Vs ratios in the Southern Korean Peninsula from Teleseismic Receiver Functions

  • Yoo, H.J.;Lee, K.;Herrmann, R.B.
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.241-248
    • /
    • 2006
  • In this study, we applied the teleseismic receiver function technique to determine the crustal thicknesses and ratios for 31 broadband stations of the Korean Peninsula and map out the lateral variation of Moho depth in the Peninsula. The estimated depths to Moho range from 26 to 35 km except for an island station ULL (17 km). The Moho is turned out to be deeper in the south-western part of the Peninsula and western Gyeongsang basin, and shallower in the off-shore region close to East Sea (Sea of Japan). The ratio varies from 1.69 to 1.89 with the average of 1.77, which is close to global average (1.78) in the crust.

  • PDF

A STUDY ON THE MOHO UNDULATION OF THE KOREAN PENINSULA FROM SATELLITE GRAVITY DATA

  • Yu, Sang-Hoon;Hwang, Jong-Sun;Min, Kyung-Duck
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.589-592
    • /
    • 2005
  • Gravity characteristics and Moho undulations are investigated in the Korean peninsula by using satellite gravity data. According to the development of satellite geodesy, gravity potential models which have high accuracy and resolution were released. Using the EIGEN-CGOIC model based on low orbit satellite data such as CHAMP and GRACE, geoid and gravity anomaly were calculated by spherical harmonic analysis. The study area is located at $123^{\circ}\sim132^{\circ}E, 33^{\circ}\sim43^{\circ}$N including Korea. Free-air anomalies, which show the effect of terrain, have the values between $-37\sim724 mgal. After Bouguer correction, the range of simple Bouguer anomalies is $-221\sim246$ mgal. Complete Bouguer anomalies after terrain correction increase from continent to marine. This phenomenon is related rise of Moho discontinuity. The cut-frequency for extraction of Moho undulation was determined by power spectrum analysis, and then 3D inversion modeling was implemented. The mean, maximum, minimum, and standard deviation of Moho depth undulation are -26, -36, -8, and 4.9 krn, respectively.

  • PDF

Crustal Structure Study and Characteristics of Moho Discontinuities beneath the Seoul and Inchon Stations using Teleseismic Receiver Functions (원격 수신함수를 이용한 서울과 인천 관측소 하부의 지각 속도구조와 Moho 불연속면 특성 연구)

  • Lee, Seoung Kyu;Kim, So Gu
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.339-347
    • /
    • 1998
  • The purpose of this study is to find P-wave crustal velocity structure and the Moho characteristics beneath Seoul (SEO) and Inchon (INCN) stations using broadband teleseismic records. The use of broadband receiver function analysis is increasing to estimate the fine-scale velocity structure of the lithosphere. The broadband receiver functions are developed from teleseismic events of P waveforms recorded at Seoul (SEO) and Inchon (INCN) stations, and are analyzed to examine the crustal structure beneath the stations. The teleseismic receiver functions are inverted in the time domain of the vertical P wave velocity structures beneath the stations. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method (Ammon et al., 1990). The general features of inversion results are as follows: (1) For the Seoul station, the Conrad and Moho discontinuities exist at 22 km and 30 km depth in the south ($BAZ=180^{\circ}$) direction. (2) For the Inchon station, the Conrad discontinuity exists at 22 km depth in the direction of SE ($BAZ=145^{\circ}$) and the Moho discontinuity exists at 30~34 km depth with a 4 km thick, which consists of a laminated velocity transition layers with thickness, whereas a crust-mantle boundary beneath the Seoul station consists of a more sharp boundary compared with the Moho shape of INCN station.

  • PDF

Deformation of Moho in the Southern Part of the Korean Peninsula (한반도 남부 모호면의 변형 구조)

  • Shin, Young-Hong;Park, Jong-Uk;Park, Pil-Ho
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.620-642
    • /
    • 2006
  • The Moho structure and its deformation in the southern part of the Korean Peninsula were estimated using gravity and topography data. Gravity signals from the upper and lower crust were separated using a filter that was computed from isostacy and elastic thickness. The result of this study shows three characteristic features of the Moho deformation. First, the Moho folding structure is parallel to SKTL (the South Korean Tectonic Line), which indicates positive association with the collision of the Yeongnam and Gyeonggi Massifs and repeated compression afterwards. In contrast, noticeable deformation of the Moho was not observed along the Imjingang Belt, which is interpreted as another continental collisional belt in the Korean Peninsula. Second, the Moho beneath the Gyeongsang Basin has remarkably risen; this seems to be the result from both the collisional compression and buoyancy caused by magmatic underplating. Third, the Moho deformation is shallowest in the east of the Taebaek Mountains and deepens toward the west, consistent with the topographic characteristic of the Korean Peninsula of "high east and low west". It can be interpreted as the results of the opening of the East Sea and Ulleung Basin. A tectonic explanation for this could be the ascent of the mantle induced by continental rifting and horizontal extension at the early stage of the opening of the East Sea. The Moho deformation model computed in this study correlates well with the earthquake distribution and crustal movement measured by GPS. We suggest that the compression along the SKTL is still exerted, consequently, the Moho deformation is active, although it may be weak.

Extraction of Moho Undulation of the Korean Peninsula from Gravity Anom-alies (중력이상을 이용한 한반도 모호면 추출에 관한 연구)

  • 김정우;조진동;김원균;민경덕;황재하;이윤수;박찬홍;권재현;황종선
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2003
  • We estimated the Moho depth of Korean Peninsula from gravity anomalies and digital elevation model. The satellite radar altimetry-derived global free-air gravity model was used to ensure the homogeneity in both data and frequency domains of the original data. Two different methods were implemented to calculate the Moho depth; the wavenumber correlation analysis (Kim et al., 2000a) and the power spectrum analysis. The former method calculates depth-to-the-Moho by correlating topographic gravity effect with free-air gravity anomaly in the wavenumber domain under the assumption that the study area is not isostatically compensated. The latter one, on the other hand, considers the different density layers (i.e., Conrad and Moho), using complete Bouguer gravity anomaly in the Frequency domain of the Fourier transform. The correlation coefficient of the two Moho model is 0.53, and methodology and numerical error are mainly responsible for any mismatch between the two models. In order to integrate the two independentely-estimated models, we applied least-squares adjustment using the differenced depth. The resultant model has mean and standard deviation Moho depths of 32.0 km and 2.5 km with (min, max) depths of (20.3, 36.6) kms. Although this result does not include any topographic gravity effect, however, the validity of isostasy and the role of local stress field in the study area should be further studied.

Crustal Structure Beneath Korea Seismic Stations (Inchon, Wonju and Pohang) Using Receiver function (수신함수에 의한 한국 지진관측소(인천, 원주 포항) 하부의 지각구조 연구)

  • Kim, So-Gu;Lee, Seung-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.43-54
    • /
    • 2004
  • The broadband receiver functions are developed from teleseismic P waveforms recorded at Wonju(KSRS), Inchon(IRIS), and Pohang(PHN), and are analyzed to examine the crustal structure beneath these stations. The teleseismic receiver functions are inverted in the time domain of the vertical P wave velocity structures beneath the stations. Clear P-to-S converted phases from the Moho interface are observed in teleseismic seismograms recorded at these stations. The crustal velocity structures beneath the stations are estimated by using the receiver function inversion method(Ammon et al., 1990). The general features of inversion results are as follows: (1) For the Inchon station, the Conrad discontinuity exists at 17.5 Km(SW) deep and the Moho discontinuity exists at 29.5 Km(NW) and 30.5 Km(SE, SW) deep. (2) The shallow crustal structure beneath Wonju station may be covered with a sedimentary rock of a 3 Km thickness. The average Moho depth is assumed about 33.0 Km, and the Conrad discontinuity may exist at 17.0 Km(NE) and 21.0 Km(NW) deep. (3) For Pohang station, the thickness of shallow sedimentary layer is a 3.0 Km in the direction of NE and NW. The Moho depth is 28.0 Km in the direction of the NE and NW. The Conrad discontinuity can be estimated to be existed at 21.0 Km deep for the NE and NW directions.

3-D Crustal Velocity Tomography in the Central Korean Peninsula (한반도 중부지역의 3차원 속도 모델 토모그래피 연구)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.235-247
    • /
    • 1998
  • A new technique of simultaneons inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the center of the Korean Peninsula including Pyongnam Basin, Kyonggi Massif, Okchon Fold Zone, Taebaeksan Fold Zone, Ryongnam Massif and Kyongsang Basin. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 32 events with 404 seismic rays are inverted for locations and crustal structure. 5 ($1^{\circ}$ along the latitude)${\times}6$ ($0.5^{\circ}$ along the longitude) ${\times}8$ block (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from the surface to the Moho, eight profiles along latitude and longitude and the Moho depth distribution was determined. The results are as follows: (1) the average velocity and thickness of sediment are 5.15 km/sec and 3-4 km, and the velocity of basement is 6.12 km/sec. (2) the velocities fluctuate strongly in the upper crust, and the velocity distribution of the lower crust under Conrad appears basically horizontal. (3) the average depth of Moho is 29.8 km and velocity is 7.97 km/sec. (4) from the sedimentary depth and velocity, basement thickness and velocity, form of the upper crust, the Moho depth and form of the remarkable crustal velocity differences among Pyongnam Basin, Kyonggi Massif, Okchon Zone, Ryongnam Massif and Kyongsang Basin can be found. (5) The different crustal features of ocean and continent crust are obvious. (6) Some deep index of the Chugaryong Rift Zone can be located from the cross section profiles. (7) We note that there are big anisotropy bodies near north of Seoul and Hongsung in the upper crust, implying that they may be related to the Chugaryong Rift Zone and deep fault systems.

  • PDF

수신함수를 이용한 한반도내의 광대역관측소부근의 속도구조 연구 (1)

  • 박윤경;전정수;김성균
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.139-142
    • /
    • 2003
  • 지구물리학적 연구에서 있어서 가장 중요한 목적 중의 하나는 지각과 상부 맨틀의 상세한 구조를 규명하는 것이다. 3성분의 지진기록을 이용하여 관측소 하부의 지각구조를 연구하는 몇 가지 방법들이 개발되었으며, 수신함수분석(receiver function analysis)이 가장 널리 사용되고 있다 (Phinney, 1964: Burdick and Langston, 1977: Owens and Crosson, 1988). 수신함수는 원거리 지진의 P파와 관측소 하부의 Moho면에서 전환된 Ps 전환파를 이용하여 관측소 하부의 지각구조를 계산하는 것이다. (중략)

  • PDF

Moho Discontinuity Studies Beneath the Broadband Stations Using Receiver Functions in South Korea (수신함수를 이용한 남한의 광대역 관측망 하부의 Moho 불연속면 연구)

  • Kim, So-Gu;Lee, Seong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.139-155
    • /
    • 2001
  • We investigate the vertical velocity models beneath the newly installed broadband seismic network of KMA (Korea Meteorological Administration) by using receiver function inversion technique. The seismic phases are primarily P-to-S conversions and reverberations generated at the two highest impedance interfaces like the Moho (crust-mantle boundary) and the sediment-basement contact. We obtained the teleseismic P-wave receiver functions, which were derived from teleseismic records of Seoul (SEO), Inchon (INCN), Tejeon (TEJ) , Sosan (SOS/SES), Kangnung (KAN), Ulchin (ULC/ULJ), Taegu (TAG), Pusan (PUS), and Ullung-do (ULL) stations. For Kwangju (KWA/KWJ) and Chunchon (CHU) stations, the Moho conversion Ps arrivals and waveforms of radial receiver functions are azimuthally inconsistent and unclear. From the receiver function inversion result, we found that crustal thickness is 29 km at INCN, SEO, and SOS (SES) stations, 28 km at KAN station in the Kyonggi Massif, 32 km at TEJ station in Okchon Folded Belt, 34 km at TAG, 33 km at PUS station in the Kyongsang Basin, 32 km at KWJ station (readjusted station by prior KWA station) included in the Youngdong-Kwangju Depression Zone, 28 km at ULC station in the eastern margin of the Ryongnam Massif, and 17 km at ULL station in the Ullung Island of the East Sea, respectively. The Moho configuration of INCN, SOS, KWJ, and KAN stations show a laminated smooth transition zone with a 3-5 km thick. The upper crusts(${\sim}5km$) of KAN, ULC, and PUS stations show complex structures with a high velocity. The unusually thick crusts are found at the TAG and PUS stations in the Kyongsang Basin compared to the thin (29-32 km) crust of the western part (INCN, SEO, SOS, TEJ, and KWA stations) The crustal thickness beneath Ullung Island (ULL station) shows the suboceanic crust with about 17 km thickness and complex with a high velocity layer of the upper crust, and the amplitudes of Incoming Ps waves from the western direction are relatively large compared to those from othor directions.

  • PDF