• 제목/요약/키워드: Modulus coefficient

검색결과 465건 처리시간 0.028초

Slag를 위주로 한 Glass-Ceramics 의 물리적 성질에 관한 연구 (A Study on the Physical Properties of Slag-based Glass-Ceramics)

  • 장승현;정형진
    • 한국세라믹학회지
    • /
    • 제17권1호
    • /
    • pp.27-34
    • /
    • 1980
  • The synthesis of glass-ceramic materials from glasses based on industrial wastes or natural rocks their physical properties were studied. Glasses of composition, CaO14.7∼16.1, MgO7.4∼9.0, Al2O38.3∼19.3, SiO2 48.9∼51.0wt% were prepared from domestic blast furnace slag, serpentine, sea sand and etc. with additions of chromic oxide, and fluoride as nucleating agent. The glasses were subjected to controlled heat treatments and yielded fine microstructure of glass-ceramics which were composed of monocrystalline phase of aluminous diopside. X-ray diffraction techniques were adopted to identify the crystalline phases and to determine the degree of crystallization quantitatively. Density, coefficient of thermal expansion, young's modulus, microhardness and modulus of rupture were measured and the resulting properties were discussed in terms of the heat-treatment conditions, the degree of crystallization, species of crystaline phase, the microstructures formed in glass-cramics and the chemical compositions of mother glasses.

  • PDF

ISDG를 이용한 다결정실리콘 기계적 물성값 측정법 (Techniques for Measuring Mechanical Properties of Polysilicon using an ISDG)

  • 오충석
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.171-178
    • /
    • 2004
  • Techniques and procedures are presented for measuring mechanical properties on thin-film Polysilicon. Narrow platinum lines are deposited 250 ${\mu}{\textrm}{m}$ apart on tensile specimens that are 3.5 ${\mu}{\textrm}{m}$ thick and 600 ${\mu}{\textrm}{m}$ wide. Load is applied by a piezo-actuator and by hanging weights. Strain is measured by an ISDC at temperatures up to 500 $^{\circ}C$. Measurements of the elastic modulus with jig modifications, loading speed and temperature change are presented first. And then, the preliminary data for the coefficient of thermal expansion and creep behavior are presented as a reference.

A Compilation and Evaluation of Thermal and Mechanical Properties of Bentonite-based Buffer Materials for a High- level Waste Repository

  • Cho, Won-Jin;Lee, Jae-Owan;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.90-103
    • /
    • 2002
  • The thermal and mechanical properties of compacted bentonite and bentonite-sand mixture were collected from the literatures and compiled. The thermal conductivity of bentonite is found to increase almost linearly with increasing dry density and water content of the bentonite. The specific heat can also be expressed as a function of water ontent, and the coefficient of thermal expansion is almost independent on the dry density. The logarithm of unconfined compressive strength and Young’s modulus of elasticity increase linearly with increasing dry density, and in the case of constant dry density, it can be fitted to a second order polynomial of water content. Also the unconfined compressive strength and Young’s modulus of elasticity of the bentonite-sand mixture decreases with increasing sand content. The Poisson’s ratio remains constant at the dry density higher than 1.6 Mg/m$_3$, and the shear strength increases with increasing dry density.

Mechanistic representation of the grading-dependent aggregates resiliency using stress transmission column

  • Sun, Yifei;Wang, Zhongtao;Gao, Yufeng
    • Geomechanics and Engineering
    • /
    • 제17권4호
    • /
    • pp.405-411
    • /
    • 2019
  • A significant influence of the particle size distribution on the resilient behaviour of granular aggregates was usually observed in laboratory tests. However, the mechanisms underlying this phenomenon were rarely reached. In this study, a mechanistic model considering particle breakage is proposed. It is found to be the combined effects of the coefficient of uniformity and the size range between maximum and minimum particle sizes that influences the resilient modulus of granular aggregates. The resilient modulus is found to undergo reduction with evolution of particle breakage by shifting the initial particle size distribution to a broader one.

탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가 (Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve)

  • 박철수;황선근;최찬용;목영진
    • 대한토목학회논문집
    • /
    • 제29권2C호
    • /
    • pp.71-79
    • /
    • 2009
  • 본 연구에서는 국내 철도 토공노반 재료로 가장 흔히 사용되는 입도조정쇄석, 화강풍화토, 암버럭-토사 혼합 재료에 대해 평균유효주응력과 축변형률의 함수로 표현되는 회복탄성계수 예측모델을 결정하였다. 회복탄성계수 예측모델은 대표적인 동적물성치인 변형률에 따른 전단탄성계수 감소곡선의 표현과 같이 최대영탄성계수와 정규화 영탄성계수 감소곡선으로 구성된다. 평균유효주응력의 함수로 표현되는 최대영탄성계수의 모델인자는 $A_E$$n_E$이고, 비선형 영역의 정규화 영탄성계수 감소곡선은 기준변형률(${\varepsilon}_r$)과 곡률계수(a)를 모델인자로 하는 수정 쌍곡선 모델로 표현된다. 제안된 회복탄성계수 예측모델을 검증하기 위해 3차원 다층탄성해석 프로그램(GEOTRACK)을 이용하여 평택 시험 철도노반의 탄성거동을 평가하였고, 화물열차 및 여객열차가 시험구간을 통과할 때 계측한 노반의 수직 탄성변위와 비교하였다. 현장계측은 자갈도상 아래의 재료가 각각 입도조정쇄석과 양질의 화강풍화토인 두 개소에서 수행되었다. 자갈도상 아래에서 계산된 수직 탄성변위는 대략 0.6mm 이내였고 계측 결과와 잘 일치하였다. 본 연구를 통해 제안된 회복탄성계수 예측모델이 열차하중에 의한 노반의 탄성거동을 적절히 표현하고 있음을 확인하였다.

온도, 변형 및 응력 계측을 통한 초기재령 콘크리트의 임계수화도 및 열팽창계수 추정 (Estimation of Critical Degree of Hydration and Thermal Expansion Coefficient of Early-Age Concrete from Measured Temperature, Strain and Stress)

  • 오병환;최성철;신준호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.809-814
    • /
    • 2002
  • Recently, the properties of early-age concrete are increasingly important because these properties directly influence the behavior of early-age concrete structures including stress and cracking behavior. Nevertheless, the studies on early-age concrete are limited to strength and temperature development. The purpose of present study is to propose a simple and rational method which can predict the stress and strain behavior of young age concrete. A series of test have been done to measure the temperature development, strains and stresses in concrete members. The concept of equivalent age was used to define the degree of hydration and this degree of hydration was used to calculate the strength and elastic modulus. The critical degree of hydration and thermal expansion coefficient were calculated using experimental data. It is seen that the critical degree of hydration range from 0.05 to 0.11 based on the measuring method. The thermal expansion coefficient was calculated based on the measured non-mechanical strain and it is found that the coefficient decreases slightly with the increase of age. The consideration of critical degree of hydration in calculating stresses gives more accurate results. The present study provides useful method and data in evaluating early-age behavior of concrete structure.

  • PDF

용융아연도금강판에서 어닐링 온도변화에 따른 화합물화가 도금층 기계적 특성 및 마찰계수에 미치는 영향 (The Influence of Annealing Temperature on Mechanical Properties and Friction Coefficient of Coating Layer in Galvannealed Sheet Steel)

  • 전성진;이정민;김동환;김동진;강연식;김병민
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.696-703
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by examining their variation with annealing temperature. To clarify the effect of surface features on the mechanical and frictional properties of GA, the several tests such as nanoindentation, Vickers hardness and nano scratch test were executed. The frictional characteristics of coating layers of GA were examined through nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper. Hardness and elastic modulus of coating layer were increased as increasing annealing temperature.

디젤엔진 피스톤 링 코팅 층의 경도에 따른 마찰특성 (Effect of Coating Layer Hardness on Frictional Characteristics of Diesel Engine Piston Ring)

  • 장정환;주병돈;이호진;김은화;문영훈
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.465-470
    • /
    • 2009
  • The frictional behaviors of Cermets/Cr-Ceramics and Cu-Al coatings of piston ring were investigated. Friction tests were carried out by pin-on-disk test and materials properties of coating layer were analyzed by nano indentation tester. The effect of surface roughness of cylinder liner on the friction coefficient was analyzed. This study provided tribological data of hard and soft piston ring coatings against cylinder liner. The surface roughness does exert an influence on the average friction coefficient, with smoother surfaces generally yielding lower friction coefficients. In case of hard-coating, the scratch depth, width and pile-up height had close relationship with hardness. So the scratch width, depth and pile-up height increases with decreasing friction coefficient. But in case of soft-coating, the friction coefficients are strongly dependent on the morphological characteristics such as, scratch depth, width, pile-up height and elastic modulus.

CFUBM Sputtering법으로 증착시킨 티타늄이 첨가된 비정질 탄소 박막의 기계적 특성 연구 (Mechanical Properties of Ti doped Amorphous Carbon Films prepared by CFUBM Sputtering Method)

  • 조형준;박용섭;김형진;최원석;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.706-710
    • /
    • 2007
  • Ti-containing amorphous carbon (a-C:Ti) films shows attractive mechanical properties such as low friction coefficient, good adhesion to various substrate and high wear resistance. The incorporation of titanium in a-C films is able to improve the electrical conductivity, friction coefficient and adhesion to various substrates. In this study, a-C:Ti films were depositied on Si wafer by closed-field unbalanced magnetron (CFUBM) sputtering system composed two targets of carbon and titanium. The tribological properties of a-C:Ti films were investigated with the increase of DC bias voltage from 0 V to - 200 V. The hardness and elastic modulus of films increase with the increase of DC bias voltage and the maximum hardness shows 21 GPa. Also, the coefficient of friction exhibites as low as 0.07 in the ambient. In the result, the a-C:Ti film obtained by CFUBM sputtering method improved the tribological properties with the increase of DC bias volatage.

비대칭 마그네트론 스퍼터링법에 의한 비정질 질화탄소 박막의 합성 및 윤활 특성 (Synthesis and Lubricant Properties of Nitrogen doped Amorphous Carbon (a-C:N) Thin Films by Closed-field unbalanced Magnetron Sputtering Method)

  • 박용섭;조형준;최원석;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.701-705
    • /
    • 2007
  • The incorporation of N in a-C film is able to improve the friction coefficient and the adhesion to various substrates. In this study, a-C:N films were deposited on Si and steel substrates by closed-field unbalanced magnetron (CFUBM) sputtering system in $Ar/N_2$ plasma. The lubricant characteristics was investigated for a-C:N deposited with total working pressure from 4 to 7 mTorr. We obtained high hardness up to 24GPa, friction coefficient lower than 0.1 and the smooth surface of having the extremely low roughness (0.16 nm). The physcial properties of a-C:N thin film are related to the increase of cross-linked $sp^2$ bonding clusters in the film. However, the decrease of hardness, elastic modulus and the increase of surface roughness, friction coefficient with the increase of $N_2$ partial pressrue might be due to the effect of energetic ions as a result of the increase of ion bombardment with the increase of ion density in the plasma.