• Title/Summary/Keyword: Modulus

Search Result 5,985, Processing Time 0.029 seconds

A Basic Study for evaluation on the Elastic Modulus of Recycled Aggregate Concrete by using Composite Model (복합이론에 의한 순환골재 콘크리트의 탄성계수 평가에 관한 기초적 연구)

  • Kim, Hyun-Wook;Kim, Ji-Yoon;Kim, Wan-ki;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.73-74
    • /
    • 2012
  • The elastic modulus of recycled aggregate concrete (RAC) can be evaluated by using composite models with experiment. In this study, Hashin's composite model was adapted to evaluate elastic modulus considering physical properties of recycled coarse aggregate (RCA) that mortar is attached. Elastic modulus testes for cement paste, mortar and recycled coarse aggregate concrete were carried out considering W/C and recycled coarse aggregate content rate. As a result, the elastic modulus of RAC was evaluated comparing with both experiment results and the existing estimation formula. Those can be used for further studies as a preliminary data.

  • PDF

The Change of Fraction of T.T.M. and Initial Modulus for PET Tire Cord Fibers with Various Spinning Speed (방사속도에 따른 타이어 코드용 PET섬유의 T.T.M. 분율과 초기탄성계수의 변화)

  • Cho, Hyun Hok;Lee, Kee Hwan;Park, Jong Bum;Kim, Sung Joong;Rhim, Moo San
    • Textile Coloration and Finishing
    • /
    • v.6 no.4
    • /
    • pp.34-39
    • /
    • 1994
  • For the purpose of obtaining high modulus PET tire cord fiber by high spinning speed, the change of initial modulus and taut tie molecules (T.T.M) fraction with the PET tire cord fibers by different spinning speed is investigated. Initial modulus decreased with increasing spinning speed but increased above spinning speed of 1500m/min. Therefore, high modulus PET tire cord fiber may be obtained above spinning speed of 3500m/min. It was found that the initial modulus of fibers depends on fraction of T.T.M.

  • PDF

Vibration Characteristics of Boxthorn(Lycium chinense Mill) (구기자 가지의 진동 특성)

  • 서정덕
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.105-114
    • /
    • 2001
  • Modulus of elasticity, modulus of rigidity, damping ratio, and natural frequency of three varieties of boxthorn (Lycium chinense Mill) (Cheongyang #2, Cheongyang gugija, and Cheongyang native) branches were analyzed. Modulus of elasticity and modulus of elasticity and modulus of rigidity of the boxthorn branch was determined using standard formula after simple beam bending and torsion test, respectively, using an universal testing machine. Damping ratio and natural frequency of branches were determined using a system consisted of an accelerometer, a PC equipped with A/D converter, and a software for data analysis. Relationship between the elastic modulus and branch diameter in overall varieties and branch types showed a good correlation (r -0.81). There was, however, no correlation between torsional rigidity and branch diameter. The internal damping results were highly variable and the overall range of the damping ratio of the boxthorn branch was 0.014-0.087, which indicated that the branch was a lightly damped structure. The natural frequency of the boxthorn branch was in the range of 89-363 rad/s for the overall varieties and branch types. A good correlation (r 0.82) existed between the natural frequency and branch diameter in overall varieties and branch type.

  • PDF

Maximization of Zero-Error Probability for Adaptive Channel Equalization

  • Kim, Nam-Yong;Jeong, Kyu-Hwa;Yang, Liuqing
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.459-465
    • /
    • 2010
  • A new blind equalization algorithm that is based on maximizing the probability that the constant modulus errors concentrate near zero is proposed. The cost function of the proposed algorithm is to maximize the probability that the equalizer output power is equal to the constant modulus of the transmitted symbols. Two blind information-theoretic learning (ITL) algorithms based on constant modulus error signals are also introduced: One for minimizing the Euclidean probability density function distance and the other for minimizing the constant modulus error entropy. The relations between the algorithms and their characteristics are investigated, and their performance is compared and analyzed through simulations in multi-path channel environments. The proposed algorithm has a lower computational complexity and a faster convergence speed than the other ITL algorithms that are based on a constant modulus error. The error samples of the proposed blind algorithm exhibit more concentrated density functions and superior error rate performance in severe multi-path channel environments when compared with the other algorithms.

A study on dynamic modulus of self-consolidating rubberized concrete

  • Emiroglu, Mehmet;Yildiz, Servet;Kelestemur, M. Halidun
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.795-805
    • /
    • 2015
  • In this study, dynamic modulus of elasticity of self-consolidating rubberized concrete is evaluated by using results of ultrasonic pulse velocity and resonance frequency tests. Additionally, correlation between dynamic modulus of elasticity and compressive strength results is compared. For evaluating the dynamic modulus of elasticity of self-consolidating rubberized concrete, prismatic specimens having $100{\times}100{\times}500$ mm dimensions are prepared. Dynamic modulus of elasticity values obtained by non-destructive measurements techniques are well agreed with those given in the literature.

Video Watermarking Based on Wavelet Magnitude Modulus Subband

  • Byun, Jin-Kyung;Moon, Young-Deuk;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.737-744
    • /
    • 2007
  • This paper proposes the blind watermarking algorithm for digital video based on magnitude modulus subband in wavelet transform domain. After transforming each of frames into wavelet domain, the proposed algorithm divides LH, HL, and HH subbands of 2-level into $3{\times}3$ blocks and calculates average magnitude modulus of all blocks. Then the watermark bit is embedded into a target magnitude modulus comparing with an average magnitude modulus within a block. Experimental results were confirmed that the proposed algorithm has the good robustness against MPEG and frame attacks than the conventional algorithm.

  • PDF

Nanoindentation experiments on some thin films on silicon (Nanoindentation 방법에 의한 박막의 경도 및 탄성계수 측정)

  • 한준희
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.596-603
    • /
    • 2000
  • The hardness and elastic modulus of three bulk materials are computed from the load and displacement data which are measured during basic nanoindentation test and compared with values determined by independent means to assess the accuracy of the method. The results show that with this technique, modulus and hardness and elastic modulus profile through depth of silicon nitride and silicon oxynitride films. The results show that for silicon nitride film deposited on silicon, hardness and elastic modulus increase as the volume ratio of NH3 : SiH4, which had been used for deposition, increases up to 20.0; and for silicon oxynitride film on silicon, the hardness and elastic modulus profile changes distinctly as the relative amount of oxygen in deposition gas mixture changes.

  • PDF

Prediction of Elastic Modulus of Unidirectional Short Fiber Composite Materials (일방향으로 배열된 단섬유 보강 복합재료의 탄성률 예측)

  • 임태원;권영두;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.407-412
    • /
    • 1990
  • Elastic modulus of unidirectional short fiber composite has theoretically derived with the consideration of Poisson's ratios of matrix and fiber. Unidirectional short fiber composite is modeled as an aggregate of grains developed by Kerner. Under the assumption of extra strain at fiber ends, the strain distribution along the fiber's length is determined, and the elastic modulus is derived from this distribution. For the consideration of effects of Poisson's ratio, Kerner's results for particulate composites are adapted as boundary conditions. The effect of differences in Poisson's ratio of fiber and matrix on elastic modulus is studied. Proposed equation shows a good agreement with experimental data of Halpin and Tock, et al.

A practical neuro-fuzzy model for estimating modulus of elasticity of concrete

  • Bedirhanoglu, Idris
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.249-265
    • /
    • 2014
  • The mechanical characteristics of materials are very essential in structural analysis for the accuracy of structural calculations. The estimation modulus of elasticity of concrete ($E_c$), one of the most important mechanical characteristics, is a very complex area in terms of analytical models. Many attempts have been made to model the modulus of elasticity through the use of experimental data. In this study, the neuro-fuzzy (NF) technique was investigated in estimating modulus of elasticity of concrete and a new simple NF model by implementing a different NF system approach was proposed. A large experimental database was used during the development stage. Then, NF model results were compared with various experimental data and results from several models available in related research literature. Several statistic measuring parameters were used to evaluate the performance of the NF model comparing to other models. Consequently, it has been observed that NF technique can be successfully used in estimating modulus of elasticity of concrete. It was also discovered that NF model results correlated strongly with experimental data and indicated more reliable outcomes in comparison to the other models.

Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia Kazinoki Sieb. - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Kim, Jae-Min;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.398-405
    • /
    • 2011
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for woodceramics made by different phenol resin impregnation ratios (40, 50, 60, 70%) for Broussonetia Kazinoki Sieb. Dynamic modulus of elasticity increased with increasing resin impregnation ratios. There was a close relationship between dynamic modulus of elasticity and static bending modulus of elasticity and between dynamic modulus of elasticity and MOR and between static bending modulus of elasticity and MOR. Therefore, the dynamic modulus of elasticity using resonance frequency mode is useful as a nondestructive evaluation method for predicting the MOR of woodceramics made by different impregnation ratios.