• Title/Summary/Keyword: Module design

Search Result 4,006, Processing Time 0.037 seconds

Thermal Dissipation Study of IT Module Simulation (IT 모듈에서의 열전달 해석과 방열 특성 연구)

  • Kim, Won-Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.427-431
    • /
    • 2020
  • In this Study, as the structure of IT module for smart phone display becomes thin to catch up with slim product trend, the reliability of display module is on the rise as a issue for product design. Especially, almost part of cellular phone should undergo thermal dissipation test. thus many manufacturers have considered design guide line using CAE and simulation for more effective usage of limited resources on the market. This test simulates the case when cellular phone slips through user's fingers while he is talking on the phone. This paper studies a thermal simulation of display module in smart phone. This design for reliability improvements are suggested on the basis of the results of FVM Analysis and display of IT module and smart phone design.

Development of Integrated Design System for Structural Design of Machine Tools (공작기계 구조물 설계를 위한 통합설계 시스템 개발)

  • 박면웅;손영태;조성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.229-239
    • /
    • 2003
  • The design process of machine tools is regarded as a sequential, discrete, and inefficient works as it requires various kinds of design tools and many working hours. This paper describes an integrated design system embedding a design methodology that can support efficiently and systematically the conceptual structural design of machine tools. The system is a knowledge-based design system and has four machine-tool-specific functional modules including configuration design, configuration analysis, structure design, and structural analysis support module. Through the configuration design and analysis module, a machine configuration appropriate for design requirements is selected, and then the arrangement of ribs fer each structural part is decided in the structure design module. Also, the structural analysis support module is used to evaluate design result by utilizing structural analysis software, ANSYS. The system is applied to design of a tapping machine, and shows that the machine structure can be designed fast and conveniently by processing each design step interactively.

A Study on the Methods of the Decorations Using Module Plants in Interior Spaces (모듈형 식물장식을 활용한 실내공간 장식방법에 대한 연구)

  • Lee, Jong-Ran
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.5
    • /
    • pp.62-69
    • /
    • 2015
  • The purpose of this research is to analyze the methods of the decorations using module plants in interior spaces. This research produced 18 types of the module plant decoration: considering the classifications of module plants(soil, hydroculture, moss), directions of module plants (up, side, down), assembling ways of module plants (horizontal, vertical). Applying these 18 types to the interior space decoration (floor stand, wall attach, ceiling hanging), 54 types were classified. After that, 150 cases of the decoration using module plants in interior spaces were collected and analyzed. In result, the cases were belong to 25 types of 54 types. The important types were the types to be able to decorate wide area of walls or ceilings without occupying floor area: SOIL-UP-VERTICAL, HYDROCULTURE-UP-VERTICAL, MOSS-SIDE-VERTICAL. These types were the decorations with function of bio-filter for air cleaning. Special types were SOIL-SIDE-HORIZONTAL, SOIL-SIDE-VERTICAL with soil developed not to pour and SOIL-DOWN-HORIZONTAL, SOIL-DOWN-VERTICAL with lucks not to pour soil. Plants will be used widely in interior design because of the awareness of eco-friendly design. The strength that module plants are portable, changable, able to exchange parts helps users to maintain plants in interior spaces. For designers, module plants are flexible materials in order to make variety of forms to adjust to interior spaces. The results of this research about methods of the decorations using module plants in interior spaces are useful to designers who want to design interior spaces eco-friendly and user-friendly.

OPTIMUM DESIGN OF AN AUTOMOTIVE CATALYTIC CONVERTER FOR MINIMIZATION OF COLD-START EMISSIONS USING A MICRO GENETIC ALGORITHM

  • Kim, Y.D.;Kim, W.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.563-573
    • /
    • 2007
  • Optimal design of an automotive catalytic converter for minimization of cold-start emissions is numerically performed using a micro genetic algorithm for two optimization problems: optimal geometry design of the monolith for various operating conditions and optimal axial catalyst distribution. The optimal design process considered in this study consists of three modules: analysis, optimization, and control. The analysis module is used to evaluate the objective functions with a one-dimensional single channel model and the Romberg integration method. It obtains new design variables from the control module, produces the CO cumulative emissions and the integral value of a catalyst distribution function over the monolith volume, and provides objective function values to the control module. The optimal design variables for minimizing the objective functions are determined by the optimization module using a micro genetic algorithm. The control module manages the optimal design process that mainly takes place in both the analysis and optimization modules.

Efficient Decoupling Capacitor Optimization for Subsystem Module Package

  • Lim, HoJeong;Fuentes, Ruben
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • The mobile device industry demands much higher levels of integration and lower costs coupled with a growing awareness of the complete system's configuration. A subsystem module package is similar to a board-level circuit that integrates a system function in a package beyond a System-in-Package (SiP) design. It is an advanced IC packaging solution to enhance the PDN and achieve a smaller form factor. Unlike a system-level design with a decoupling capacitor, a subsystem module package system needs to redefine the role of the capacitor and its configuration for PDN performance. Specifically, the design of package's form factor should include careful consideration of optimal PDN performance and the number of components, which need to define the decoupling capacitor's value and the placement strategy for a low impedance profile with associated cost benefits. This paper will focus on both the static case that addresses the voltage (IR) drop and AC analysis in the frequency domain with three specific topics. First, it will highlight the role of simulation in the subsystem module design for the PDN. Second, it will compare the performance of double-sided component placement (DSCP) motherboards with the subsystem module package and then prove the advantage of the subsystem module package. Finally, it will introduce three-terminal decoupling capacitor (decap) configurations of capacitor size, count and value for the subsystem module package to determine the optimum performance and package density based on the cost-effective model.

Development of Automated forging Design System for Forging Process Design of Stepped Asymmetric Parts (다단 비축대칭 부품의 단조 공정설계를 위한 단조품설계 자동화)

  • 조해용;허종행;민규식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.102-107
    • /
    • 2000
  • This study describes computer-aided design system for stepped asymmetric forgings. To establish the appropriate process sequence, an integrated approach based on a rule-base system was accomplished. This system has four modules, which are undercut prevention module, shape cognition module, 3D modelling module and corner/fillet correction module. These modules can be used independently or at all. The proposed shape cognition method could be widely used in forging design of asymmetric parts.

  • PDF

Fast Response Driving of TFT LCD for Motion Picture

  • Choi, Yu-Jin;Mo, Soon-Hee;Bae, Young-Min;Lim, Young-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.449-451
    • /
    • 2002
  • We reported the algorithm of driving scheme that enhances moving picture property by improving gray-to-gray response time. Here, we report result of simulation for estimation of driving voltage to reduce response time, and experimental result. We investigated optimization of algorithm so that minimum size of LUT can support to reducing the gray-to-gray response time within 1 frame period, and with single algorithm it is possible to apply the algorithm to various kinds of LC material. So in our system there is no external EEPROM.

  • PDF

A System Design for Evolutionary Optimizer (Evolutionary Optimizer를 위한 시스템 설계)

  • Rhee Chang-Kwon;Byun Jai-Hyun
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.503-506
    • /
    • 2004
  • Evolutionary operation is useful to improve on-line full-scale manufacturing processes by systematically changing the levels of the process variables without jeopardizing the product. This paper presents a system design for an evolutionary operation software called 'evolutionary optimizer'. The system design is based primarily on data flow diagram. Evolutionary optimizer consists of four modules: factorial design module, many variables module, mixture Production module, and mean/dispersion module.

  • PDF

A Study on The CAE Process of Balance Shaft Module Development (밸런스 샤프트 개발을 위한 CAE 프로세스에 관한 연구)

  • Lee, Dong-Won;Kim, Chan-Jung;Kwon, Sung-Jin;Kim, Wan-Soo;Bae, Chul-Yong;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.540-545
    • /
    • 2008
  • The design on balance shaft module is performed based on the target specification of engine module as well as the its own dynamic nature under a high speed rotation. However, the specific information for engine module is not always available for non-motor companies even though a reliable analytical result should be attached in the conceptual design process or more detail works. In this paper, the analysis on balance shaft module, both each parts or module itself, is suggested to estimate the performance on the target component with respect to durability and NVH without any consideration of a engine module. This methodology could modify the nominal balance shaft model before the production of prototype such that cost reduction as well as time saving can be expected during design process of balance shaft module.

  • PDF

Design, fabrication, and performance analysis of a twisted hollow fibre membrane module configuration

  • Palmarin, Matthew J.;Young, Stephanie;Lee, Tsun Ho
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • The compact structure and high-quality effluent of membrane bioreactors make them well-suited for decentralized greywater reclamation. However, the occurrence of membrane fouling continues to limit their effectiveness. To address this concern, a unique membrane module configuration was developed for use in a decentralized greywater treatment system. The module featured local aeration directly below a series of inclined membrane bundles, giving the overall module a twisted appearance compared to a module with vertically orientated fibres. The intent of this design was to increase the frequency and intensity of collisions between rising air bubbles and the membrane surface. Material related to the construction of custom-fit modules is rarely communicated. Therefore, detailed design and assembly procedures were provided in this paper. The twisted module was compared to two commercially available modules with diverse specifications in order to assess the relative performance and marketability of the twisted module with respect to existing products. Contaminant removal efficiencies were determined in terms of biochemical oxygen demand, chemical oxygen demand, ammonia, total nitrogen, total phosphorus, and turbidity for each module. Membrane fouling was monitored in terms of permeate flux, transmembrane pressure, and membrane resistance. Following 168 h of operation, the twisted module configuration demonstrated competitive performance, indicating good potential for further development and commercialization.