• Title/Summary/Keyword: Module Surface Temperature

검색결과 170건 처리시간 0.027초

DSF의 성형조건 변화가 전사성에 미치는 영향에 관한 연구 (An study of transcription by processing conditions of Direct Surface Forming Method)

  • 조광환;윤경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.221-224
    • /
    • 2003
  • Recently, the market share of the thin-film-transistor liquid-crystalline-display (TFT-LCD) is growing rapidly in display device market. The backlight unit is used as a light source of TFT-LCD module. A light-guide is one of several important components of backlight unit. The manufacturing technology and optical system design of the light guide is very sensitive to quality and cost of the TFT-LCD module. In the present study a new manufacturing method which is called as direct surface forming(DSF) has been tested under various conditions. The result of this test, V-groove pattern shows different shapes depends on the temperature of mold surface, contact time of mold and depth of V-groove.

  • PDF

대형공간환기용 축류팬에 사용되는 밀폐형 모터의 열신뢰성 분석 (Thermal Reliability Analysis of a Closed Type Motor in an Axial Fan for the Large Space Ventilation)

  • 이태구;허진혁;문선애;유호선;문승재;이재헌
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.494-499
    • /
    • 2007
  • The thermal reliability of the closed-type BLDC motor for the high speed axial fans is analyzed by a numerical method in this dissertation. Since the module and the motor part are combined in a closed case, the heat generated from a rotor in the motor and the electronic components in the PCB module can not be effectively removed to the outside. Therefore the module will easily fail by high temperature. The accelerated-life testing was accomplished to formulate the life equation and numerical method is used to predict the inside temperature of the PCB module, which is one of the life equation parameter according to the environment. The experiment for measuring the surface heat flux of the electronic components is carried out to apply the boundary condition of numerical study. When the environment temperature of BLDC motor is 21, 35 and $50^{\circ}C$, the temperature in the PCB space is predicted as 73.4, 87.5 and $102.4^{\circ}C$. Then the life time with the temperature are calculated as 2,239, 863 and 328.

  • PDF

태양광모듈 냉각장치를 이용한 태양광발전장치 발전효율 향상을 위한 연구방안 (Research Plan to improve Power Generation Efficiency of Photovoltaic Units using Photovoltaic Module Cooling System)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.199-204
    • /
    • 2020
  • 국내에서 사용 중인 실리콘 태양전지판의 경우 제작 사양이 -0.5에서 0.05℃ 한계에서 최대출력을 낼 수 있도록 설계되어있어 온도 1℃ 상승 시 0.45~0.55%의 출력이 감소한다. 결과적으로 태양광발전은 태양전지(CELL)의 특성상 태양광모듈의 표면 온도상승에 따라 출력이 떨어지게 된다. 출력 저하는 태양광발전의 효율을 떨어뜨리며 효율이 떨어지면 최종적으로 태양광발전의 발전량에 따른 전력판매 수익이 감소하는 결과를 낳는다. 따라서 본 논문에서는 온도검출 센서를 통해 설정된 온도 이상으로 식별 시 태양광모듈 하부(또는 주변)에 냉각 공기를 분사시키는 방식을 연구방안으로 제안한다. 추가로 손실된 태양에너지를 활용하여 발전량을 증가시키며 냉각 공기를 통한 냉각기능을 적용함으로써 발전량을 더욱 증대시킬 수 있도록 하였다.

셀 표면의 충돌제트를 이용한 태양광발전 시스템 효율향상에 관한 연구 (Improving the effectiveness of a photovoltaic system by water impinging jet on the surface of photovoltaic cells)

  • 유상필;진주석;김혁균;김이현;정성대;서용석;정남조
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.241-244
    • /
    • 2009
  • This study is focused on the improving effectiveness of a photovoltaic system. The characteristic of crystalline silicon solar cells, that 0.5% reduction in generating power is occurred by increasing temperature $1^{\circ}C$ of module. Typically, average solar generating power is higher spring and fall than summer. Degradation phenomena shall shorten the life of the module when the temperature of modules is $70^{\circ}C$. Decreasing temperature 40degree of the module and increasing the solar power 20% was presented using the water impinging jet method on the surface of photovoltaic cells. It is shown that Impinging jet have an effected on heat and deliver effective substance from the area in which the injection is effective.

  • PDF

DTS 기반 온도 감시 및 온도 조건에서의 배터리 셀 열화 특성 분석 (DTS-based Temperature Monitoring and Analysis of Battery Cell Deterioration Characteristics by Temperature Condition)

  • 권순종;김수연;황진;우상균;김봉석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.143-149
    • /
    • 2022
  • As ESS safety issues increase recently, there is a need to more precisely monitor the temperature of the ESS. In this paper, DTS technology for temperature monitoring of ESS batteries is introduced and the temperature measurement principle is explained. The temperature of the battery module is measured using the DTS system, and the thermal deviation between battery cells inside the battery module is analyzed. In order to analyze how thermal imbalance affects the charging and discharging performance of the battery, an accelerated degradation test was conducted. Cycle life characteristics analysis, battery surface temperature change, and AC impedance characteristics were conducted to analyze how the performance of battery cells differs according to temperature conditions.

판틀형 투과증발 막모듈내에서 feed 온도 분포 예측을 위한 모델링 (Modeling of Pervaporation Process: Prediction of Feed Temperature Distribution in A Frame and Plate Type of Membrane Module)

  • 원장묵;염충균;임지원;배성렬;하백현
    • 멤브레인
    • /
    • 제6권1호
    • /
    • pp.44-52
    • /
    • 1996
  • 평판형 모듈 설계의 최적화를 목적으로 feed 흐름 조건에 따른 feed 온도 및 유속분포를 예측할 수 있는 모델식을 확립하였고 모델 모사를 통해 흐름 조건들이 온도 분포에 끼치는 영향들을 조사하였다. 모델내의 유체의 Re 크기가 커지면 채널 두께방향으로의 유속 구배가 커질 뿐 아니라 투과물 증발을 위한 에너지원인 feed 흐름 속도가 커져 물질 및 열흐름이 증가하여 투과물 증발로 인한 feed 온도 강하가 증어든다. 반면에 채널 간격이 작아지면 feed 흐름량이 상대적으로 작아져 급격한 온도 강하를 야기시킨다. Re 크기에 따른 feed 온도 변화는 실험결과와 일치함이 관찰되었다.

  • PDF

콘크리트 구조물에서의 열전모듈 거동에 관한 기초연구 (Fundamental Study of the Behavior of Thermoelectric Module on Concrete Structure)

  • 임치수;이재준
    • 한국도로학회논문집
    • /
    • 제17권5호
    • /
    • pp.33-38
    • /
    • 2015
  • PURPOSES : The purpose of this paper is to investigate the application of thermoelectric technology to concrete structures for harvesting solar energy that would otherwise be wasted. In various fields of research, thermoelectric technology using a thermoelectric module is being investigated for utilizing solar energy. METHODS: In our experiment, a halogen lamp was used to produce heat energy instead of the solar heat. A data logger was used to record the generated voltage over time from the thermoelectric module mounted on a concrete specimen. In order to increase the efficiency of energy harvesting, various factors such as color, architecture, and the ability to prevent heat absorption by the concrete surface were investigated for the placement of the thermoelectric module. RESULTS : The thermoelectric module produced a voltage using the temperature difference between the lower and upper sides of the module. When the concrete specimen was coated with an aluminum foil, a high electric power was measured. In addition, for the power generated at low temperatures, it was confirmed that the voltage was generated steadily. CONCLUSIONS: Thermoelectric technology for energy harvesting can be applied to concrete structures for generating electric power. The generated electricity can be used to power sensors used in structure monitoring in the future.

VMD 모듈의 열성능 특성 연구 (A Study on the Thermal Characteristics of Vacuum Membrane Distillation Module)

  • 주홍진;양용우;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제34권5호
    • /
    • pp.23-31
    • /
    • 2014
  • This study was accomplished to get the foundation design data of VMD(Vacuum Membrane Distillation) system for Solar Thermal VMD plant. VMD experiment was designed to evaluate thermal performance of VMD using PVDF(polyvinylidene fluoride) hollow fiber hydrophobic membranes. The total membrane surface area in a VMD module is $5.3m^2$. Experimental equipments to evaluate VMD system consists of various parts such as VMD module, heat exchanger, heater, storage tank, pump, flow meter, micro filter. The experimental conditions to evaluate VMD module were salt concentration, temperature, flow rate of feed sea water. Salt concentration of feed water were used by aqueous NaCl solutions of 25g/l, 35g/l and 45g/l concentration. As a result, increase in permeate flux of VMD module is due to the increasing feed water temperature and feed water flow rate. Also, decrease in permeate flux of VMD module is due to increasing salinity of feed water. VMD module required about 590 kWh/day of heating energy to produce $1m^3/day$ of fresh water.

LED 조명 모듈 표면의 방사율 측정에 관한 연구 (Measurement of the Surface Emissivity of the LED Lighting Module)

  • 박진성;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.493-501
    • /
    • 2013
  • LED lighting is sensitive because it made by semiconductor. So it has been researched about radiation of heat technologies for a long time. In addition, measurement and assessment a radiation of heat also conducted. It is necessary to get a date of accuracy temperature on the board after LED driven for measuring Junction temperature of the LED Lighting. For this research, we use 5 chip which is 4 W power on top of LED lighting board made by aluminum. Thermal camera effects to emissivity depending on material and property of the surface in LED board because it determines thermal energy which emitted from material surface. it is not only thermal camera has not a standard about emissivity. It has an error of temperature when emissivity was measured by thermal camera. we confirmed that emissivity and reflected temperature depending on color and quality of the surface throughout experiment.

태양광발전시스템 인버터 용량 산정에 관한 연구 (A Study on the Photovoltaic System Inverter Sizing)

  • 이경수
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.804-810
    • /
    • 2016
  • Photovoltaic system construction of the module capacity in domestic is specified criteria to less than 105% of the inverter capacity. However, the modules are installed in the outdoor actual output is reduced due to factors such as the irradiation intensity, module surface temperature. Thus, it needs the capacity of the inverter to be designed according to the actual module output. In this paper, the first approach to find the actual module output is to analyze the actual PV system monitoring data. Next, four sites where the loss analysis, system utilization, inverter utilization, and the ratio of the inverter overload are performed using PVSYST software. By changing the ratio of the module capacity, the inverter capacity of the site B is confirmed 20% less than the module capacity. Site A, C, D are identified as the ratio of the inverter capacity is 10% less than the module capacity.