• Title/Summary/Keyword: Module Plants

Search Result 151, Processing Time 0.033 seconds

Design of Economic Analysis Module for Waste Heat Recovery based on Systems Engineering Approach (시스템엔지니어링 기반 산업 폐열 발전시스템 경제성 분석 모듈 설계)

  • Kim, Joon Young;Cha, Jae Min;Park, Sung Ho;Shin, Jung Uk;Lee, Tae Kyong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • In the energy-guzzling industries such as steel making and cement, power plants utilizing waste heat have been attracting attention to increase energy efficiency. However, the existing economic analysis system doesn't consider the special working fluids and the cost models of the main equipment used in the waste heat recovery power plant. So it is difficult to estimate the plant economics accurately. Therefore, It is required to develop a economic analysis module that can more accurately evaluate for the power plant. In this study, the systems engineering approach was used to design and develop the module that systematically reflects the characteristics of the power plant and various requirements. Specifically, first, the special working fluids and main equipment applied to the power plant were investigated. Next, the cost models for each equipment were developed. Finally, the economic analysis module based on this was developed.

A Study on the Design of Digital Controllers with Automatic Calibration (자동 보정형 디지털 제어기 설계에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.413-416
    • /
    • 1998
  • Sensitivity and calibration considerations are most important in the design and implementation of real control systems. Ideally parameter changes due to various causes should not appreciably affect the system's performances. But all the values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. In this paper, we propose a digital controller which has the capability of calibration and gain adjustment as well as the execution of control law. Specifically the problems of gain adjustment and offset calibration in the light source and CdS sensor module for position measurement in a flexible link system are considerably resolved. The parameters of measurement module are prone to change due to environmental brightness conditions resulting in poor steady state performance of the overall control system. Thus a proper method is necessary to provide correction to the changed values of gain and offset in the position measurement module. The proposed controller, whenever necessary, measures the open-loop characteristics, andthen calculates the offset and sensor gain correction values based on the prepared standard measurements. It is applied to the control of a flexible link system with the gain and offset calibration porblems in the light sensor module for position to show the applicability.

  • PDF

Development of ISI UT Auto Flaw Evaluation and Acceptance Module of Nuclear Power Plants (원전 ISI UT 자동 결함평가 및 판정 모듈 개발)

  • Park, Ik-Keun;Park, Un-Su;Kim, Hyun-Mook;Kim, Chung-Seok;Um, Byong-Guk;Lee, Jong-Po
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.212-218
    • /
    • 2000
  • The importance and role of pre-/in-service inspection(PSI/ISI) for nuclear power plant(NPP) components are intimately related to plant design, safety, reliability, operation, etc. In this paper, for an effective and efficient management of large amounts of PSI/ISI data in NPPs, an intelligent database program(WS-IDPIN) for PSI/ISI data management of NPP was developed. WS-IDPIN program enables the prompt extraction of previously conducted PSI/ISI conditions and results so that the time-consuming data management, painstaking data processing and analysis in the past are avoided. Furthermore, development of ISI UT auto flaw evaluation and acceptance module based on ASME Code Sec. XI were presented. This module can be used for any angle beam examination from flat plate to spherical shapes as selected by the proper azimuthal angle. This program can be further developed as a unique PSI/ISI data management expert system.

  • PDF

Influence and analysis of a commercial ZigBee module induced by gamma rays

  • Shin, Dongseong;Kim, Chang-Hwoi;Park, Pangun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1483-1490
    • /
    • 2021
  • Many studies are undertaken into nuclear power plants (NPPs) in preparation for accidents exceeding design standards. In this paper, we analyze the applicability of various wireless communication technologies as accident countermeasures in different NPP environments. In particular, a commercial wireless communication module (WCM) is investigated by measuring leakage current and packet error rate (PER), which vary depending on the intensity of incident radiation on the module, by testing at a Co-60 gamma-ray irradiation facility. The experimental results show that the WCMs continued to operate after total doses of 940 and 1097 Gy, with PERs of 3.6% and 0.8%, when exposed to irradiation dose rates of 185 and 486 Gy/h, respectively. In short, the lower irradiation dose rate decreased the performance of WCMs more than the higher dose rate. In experiments comparing the two communication protocols of request/response and one-way, the WCMs survived up to 997 and 1177 Gy, with PERs of 2% and 0%, respectively. Since the request/response protocol uses both the transmitter and the receiver, while the one-way protocol uses only the transmitter, then the electronic system on the side of the receiver is more vulnerable to radiation effects. From our experiments, the tested module is expected to be used for design-based accidents (DBAs) of "Category A" type, and has confirmed the possibility of using wireless communication systems in NPPs.

Development of a Greenhouse Monitoring System Using Network (네트워크를 이용한 온실 감시 시스템의 개발)

  • 임정호;류관희;진제용
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • This study was carried out to design, construct, and test a greenhouse monitoring system fur the environment and status of control devices in a greenhouse from a remote site using internet. The measuring items selected out of many environmental factors were temperature, humidity, solar radiation, CO$_2$, SOx, NOx concentration, EC, pH of nutrient solution, the state of control devices, and the image of greenhouse. The developed greenhouse monitoring system was composed of the network system and the measuring module. The network system consists of the three kinds of monitors named the Croup Monitor. the Client Monitor and the Server Monitor. The results of the study are summarized as follows. 1. The measuring module named the House Monitor. which is used to watch the state of the control device and the environment of the greenhouse, was developed to a embedded monitoring module using one chip microprocessor 2. For all measuring items. the House Monitor showed a satisfactory accuracy within the range of ${\pm}$0.3%FS. The House Monitors were connected to the Croup Monitor by communication method of RS-485 type and could operate under power and communication fault condition within 10 hours. The Croup Monitor was developed to receive and display measurement data received from the House Monitors and to control the greenhouse environmental devices. 3. The images of the plants inside greenhouse were captured by PC camera and sent to the Group Monitor. The greenhouse manager was able to monitor the growth state of plants inside greenhouse without visiting individual greenhouses. 4. Remote monitoring the greenhouse environment and status of control devices was implemented in a client/server environment. The client monitor of the greenhouse manager at a remote site or other greenhouse manager was able to monitor the greenhouse environment and the state of control devices from the Server Monitor using internet.

Shielding Effectiveness Analysis of the Digital Module Storage Cabinet for Nuclear Power Plants According to the Internal Structure and the Angle of EM wave Incidence (내부구조와 전파 입사각에 따른 원전용 디지털 모듈 보관 캐비닛의 차폐효과 분석)

  • Youn, Sang-Woon;Jang, Do-Young;Choo, Ho-Sung;Kim, Young-Mi;Lee, Jun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, the cabinet shielding effectiveness (SE) including digital modules for nuclear power plants is analyzed depending on the internal structure and electromagnetic (EM) wave incidence angle. To analyze the SE, the cabinet and modules are modeled using the FEKO EM simulation tool. The SE is then obtained by comparing the electric field with and without the cabinet. In addition, the cabinet SE is observed by changing various conditions such as the spacing of each digital module, incidence angle, and the polarization of the EM wave at the 2.4 G[Hz frequency. To verify the results, the dipole antenna for SE measurements is fabricated, and the SE is measured in a semi-anechoic chamber. The result demonstrates that the SE by the cabinet structure can be expected to be higher when the polarization of the incident EM wave is horizontal to the ground and the distance between the digital modules is wide.

Roof Greening applied a Sallow Green Roof Module System Out of Management - Focused on the Effects on the Growth of Plants by Difference of Soil Mixture Ratio - (식생모듈박스를 이용한 저토심 무관리형 옥상녹화 - 토양 배합비가 식물생육에 미치는 영향을 중심으로 -)

  • Kang, Tai-Ho;Zhao, Hong-Xia;Li, Hong;Kang, Sung-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.91-98
    • /
    • 2012
  • The objective of this study was to analyze the effects on the growth of Sedum species by different soil in shallow green roof module system, and to find the best soil mixture. The experiment used a module system, 7cm soil depth, five types of soil mixture ratio, and it was carried out on 7th Hoar rooftop in December of 2010. The growth status of the plant showed the most superior of the P5C7P2V1, next P10C1P2V1 and P1P1V1, P1 and C1 showed very poor growth. This result showed that the soil mixture ratio (P5C7P2V1) in green roof module system with minimum management can contribute to the proliferation of rooftop greening in urban settings.

Systems Engineering Approach to develop the FPGA based Cyber Security Equipment for Nuclear Power Plant

  • Kim, Jun Sung;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.73-82
    • /
    • 2018
  • In this work, a hardware based cryptographic module for the cyber security of nuclear power plant is developed using a system engineering approach. Nuclear power plants are isolated from the Internet, but as shown in the case of Iran, Man-in-the-middle attacks (MITM) could be a threat to the safety of the nuclear facilities. This FPGA-based module does not have an operating system and it provides protection as a firewall and mitigates the cyber threats. The encryption equipment consists of an encryption module, a decryption module, and interfaces for communication between modules and systems. The Advanced Encryption Standard (AES)-128, which is formally approved as top level by U.S. National Security Agency for cryptographic algorithms, is adopted. The development of the cyber security module is implemented in two main phases: reverse engineering and re-engineering. In the reverse engineering phase, the cyber security plan and system requirements are analyzed, and the AES algorithm is decomposed into functional units. In the re-engineering phase, we model the logical architecture using Vitech CORE9 software and simulate it with the Enhanced Functional Flow Block Diagram (EFFBD), which confirms the performance improvements of the hardware-based cryptographic module as compared to software based cryptography. Following this, the Hardware description language (HDL) code is developed and tested to verify the integrity of the code. Then, the developed code is implemented on the FPGA and connected to the personal computer through Recommended Standard (RS)-232 communication to perform validation of the developed component. For the future work, the developed FPGA based encryption equipment will be verified and validated in its expected operating environment by connecting it to the Advanced power reactor (APR)-1400 simulator.

A Study on the Structural Behavior of FPSO Topside Module by Support Condition (지지조건에 따른 FPSO 상부 모듈의 구조적 거동에 관한 연구)

  • Jang, Beom-Seon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.18-23
    • /
    • 2018
  • FPSO consists of topside modularized plants for production of crude oil, and hullside structures that serve as support for the topside and storage of produced crude oil. The structural behavior of the FPSO topside module and its supporting hull depends on the interface structure that connects them, and the interface structure consists of a combination of individual unit support structures called Module Support Seat (MSS). Types of interface structures are various and, accordingly, the basic design of the FPSO topside module structure is greatly influenced, so various design methods should be considered from the initial design phase. Structural design of FPSO topside module requires consideration of the number of MSSs, connection type, and structural analysis options such as the range of finite element models, load conditions, and boundary conditions for verification of structural strength. In this study, the comparison combination cases for the above considerations were derived and the strength evaluation was performed, and the structural behavior characteristics of the topside module were compared and analyzed through a detailed review of the analysis results. The results of this study are considered to be a good reference for designing a more reliable topside module structure.

The development of high-performance PRO module and effects of operating condition on the performance of PRO module (고성능 PRO 모듈 개발 및 운전조건이 모듈 성능에 미치는 영향)

  • Han, Man Jae;Sim, Yeonju;Lee, Jong Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.303-310
    • /
    • 2017
  • Pressure retarded osmosis(PRO) has attracted much attention as potential technology to reduce the overall energy consumption for reverse osmosis(RO) desalination. The RO/PRO hybrid process is considered as the most logical next step for future desalination. The PRO process aims to harness the osmotic energy difference of two aqueous solutions separated by a semipermeable membrane. By using the concentrated water(RO brine) discharged from existing RO plants, the PRO process can effectively exploit a greater salinity gradient to reduce the energy cost of processing concentrated water. However, in order to use RO brine as the draw solution, PRO membrane must have high water flux and enough mechanical strength to withstand the high operational pressure. This study investigates the development of a thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on the overall power density was studied using the characteristic factors of PRO membranes. Finally, the performance test of an 8-inch spiral wound module was carried out under various operating conditions(i.e. hydraulic pressure, flow rate, temperature). As the flow rate and temperature increased under the same hydraulic pressure, the PRO performance increased due to the growth of water permeability coefficient and osmotic pressure. For a high performance PRO system, in order to optimize the operating conditions, it is highly recommended that the flow pressure be minimized while the flow rate is maintained at a high level.