• Title/Summary/Keyword: Modular design

Search Result 831, Processing Time 0.027 seconds

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

A Study on Channel 4's Station Identification: focused on 'Modular Typography'

  • John, Adjah;Hong, Mi-Hee
    • Cartoon and Animation Studies
    • /
    • s.42
    • /
    • pp.241-262
    • /
    • 2016
  • British TV Channel 4 is one of the famous TV Channel in the world. Its station ID has also played a leading role in the developments of Motion Graphics including station IDs. This station ID's main visual design concept is its name and an iconic logo '4' at the same time. The first channel 4 station ID was designed by using modular typography to construct the iconic '4'. Modular typography is a technique of creating letters with similar elements. Channel 4's station ID was constructed from coloured polygons. The polygons split and converge at the same point in 3D space. Modularity in Channel 4's station ID is evidenced by the similar units of polygons. After the first station ID, Channel 4 was re-branded. Eventhough the station IDs which followed did not use coloured and geometrical polygons, modularity is seen in most of the station IDs especially between 2004 - 2011. In these station IDs, the iconic '4' is formed from similar natural and environmental objects like rocks, buildings, lights etc. In this analysis paper, there is a visual narrative on the history of Channel 4, the concept of modular typography in the original station ID and the application of modular typography in other Channel 4's station IDs.

Flexible Unit Floor Plan of a Modular House Considering the Production System (생산 시스템을 고려한 모듈러주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2021
  • After World War II, modular housing was developed as a means of quickly and efficiently meeting the housing supply demand. For the past 30 plus years, efforts have been made to improve modular housing in South Korea and to increase their competitiveness in the housing market. This study investigated modular houses based on a steel framed rahem structure which provides a flexible floor plan where walls are easily reconfigured to create rooms of various sizes and functions. Similar to the factory production methods used in the automotive industry, the modular housing industry can also benefit by standardizing such aspects as building components, manufacturing and construction methods, materials, process management, and floor plans. This study examined the feasibility of using a 3m × 3m module for developing various floor plans which are easy to produce and transport. Each 3m × 3m module can be configured to meet different living needs resulting in a complete home when multiple modules are connected. The module configurations can be varied to meet ground transportation and crane limitations. This study found that a 3m × 3m steel framed modular unit is a promising step towards providing residents with plans that meet their living preferences while improving and increasing the supply of modular houses.

Low Complexity GF(2$^{m}$ ) Multiplier based on AOP (회로 복잡도를 개선한 AOP 기반의 GF(2$^{m}$ ) 승산기)

  • 변기영;성현경;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2633-2636
    • /
    • 2003
  • This study focuses on the new hardware design of fast and low-complexity multiplier over GF(2$\^$m/). The proposed multiplier based on the irreducible all one polynomial (AOP) of degree m, to reduced the system's complexity. It composed of Cyclic Shift, Partial Product, and Modular Summation Blocks. Also it consists of (m+1)$^2$2-input AND gates and m(m+1) 2-input XOR gates. Out architecture is very regular, modular and therefore, well-suited for VLSI implementation.

  • PDF

A Development of Central Monitoring and Control System using Duplex Redundancy Modular (이중화 방식을 이용한 중앙 감시 및 제어 시스템 개발에 관한 연구)

  • Won, Tae-Hyun;Kim, Mun-Soo;Lee, Yong-Kil;Kim, Young-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.680-682
    • /
    • 1999
  • This paper presents a design of central monitoring and control system using duplex redundancy modular. Communication protocol used fieldbus and application program for monitoring and control have been developed by CIMON. The performance and convenience of developed system is demonstrated cremation furnace.

  • PDF

A Design of an Open Architectural Controller Platform for Semiconductor Manufacturing Equipment (반도체 제조 장비를 위한 개방형 제어기 플랫폼 설계)

  • 장성진;김홍록;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.290-290
    • /
    • 2000
  • This paper presents some ideas about an open architectural controller platform for semiconductor manufacturing equipment First, we proposed modular-typed software architecture. Each module is composed of commands and status sets. Second, common bus protocol is suggested in order to communicate with other modules. It is designed with visual c++ programming. Finally, job program is consisted of simple commands and status. Consequently, Controllers are easily developed with some required modular assembling.

  • PDF

Comparison of High Speed Modular Multiplication and Design of Expansible Systolic Array (고속 모듈러 승산의 비교와 확장 가능한 시스톨릭 어레이의 설계)

  • Chu, Bong-Jo;Choe, Seong-Uk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.5
    • /
    • pp.1219-1224
    • /
    • 1999
  • This paper derived Montgomery's parallel algorithms for modular multiplication based on Walter's and Iwamura's method, and compared data dependence graph of each parallel algorithm. Comparing the result, Walter's parallel algorithm has small computational index in data dependence graph, so it is selected and used to computed spatial and temporal pipelining diagrams with each projection direction for designing expansible bit-level systolic array. We also evaluated internal operation of proposed expansible systolic array C++ language.

  • PDF

IFC-based Representation Method of Part Information in Superstructure Module of Modular Steel Bridge with Assembly System (모듈러 강교량 상부모듈의 조립체계 정의를 통한 IFC 기반의 부품정보 표현방법)

  • An, Hyun Jung;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.307-314
    • /
    • 2012
  • IFC-based representation method of part library for superstructure module of modular steel bridge is proposed. The library is capable of efficiently offering and exchanging part information in process of manufacture, assembly, design, and construction of modular steel bridge. Entities, representing physical part information in IFC model, are matched semantically with parts of the superstructure module for representation of part information with IFC model. Either types of matched entities are applied in order to verify the role of each part, or new types are defined as a user-defined types. In addition, assembly system has been classified and defined into 4 levels of LoD(Level of Detail) to provide appropriate part information efficiently from the part library in each step of the process. Then, new property is defined for representing the LoD information with IFC Model. Finally, IFC-based test library of modular steel bridge is generated by applying the matched entities and entity types to the actual the superstructure module of modular steel bridge.

Structural Performance of the Modular System with Fully Restrained Moment Connections using Ceiling Bracket (천장 브래킷을 이용한 완전강접합 모듈러 시스템의 구조성능)

  • Lee, Seung-Jae;Kwak, Eui-Shin;Park, Jae-Seong;Kang, Chang-Hoon;Shon, Su-Deok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.37-44
    • /
    • 2017
  • Due to structural characteristics, construction costs and duration of a modular system would be saved by minimizing the schedule on the job site. As such, it is crucial to develop a connection that can guarantee stiffness while allowing for simple assembling. Particularly, the mid- to high-rise construction of the modular system necessitates the securing of the structural stability and seismic performance of multi-unit frames and connections, and thus, the stiffness of unit-assembled structures needs to be re-evaluated and designed. However, evaluating a frame consisting of slender members and reinforcing materials is a complicated process. Therefore, the present study aims to examine the structural characteristics of a modular unit connection based a method for reinforcing connection brackets and hinges while minimizing the loss of the cross section. Toward this end, the study modeled the beam-to-column connection of a modular system with the proposed connection, and produced a specimen which was used to perform a cycling loading test. The study compared the initial stiffness, the attributes of the hysteretic behavior, and the maximum flexural moment, and observed whether the model acquired the seismic performance, compared to the flexural strength of the steel moment frame connection that is required by the Korean Building Code. The test results showed that the proposed connection produced a similar initial stiffness value to that of the theoretical equation, and its maximum strength exceeded the theoretical strength. Furthermore, the model with a larger ceiling bracket showed higher seismic performance, which was further increased by the reinforcement of the plate.