• Title/Summary/Keyword: Modular Platform

Search Result 82, Processing Time 0.025 seconds

Design and Development of Modular Replaceable AI Server for Image Deep Learning in Social Robots on Edge Devices (엣지 디바이스인 소셜 로봇에서의 영상 딥러닝을 위한 모듈 교체형 인공지능 서버 설계 및 개발)

  • Kang, A-Reum;Oh, Hyun-Jeong;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.470-476
    • /
    • 2020
  • In this paper, we present the design of modular replaceable AI server for image deep learning that separates the server from the Edge Device so as to drive the AI block and the method of data transmission and reception. The modular replaceable AI server for image deep learning can reduce the dependency between social robots and edge devices where the robot's platform will be operated to improve drive stability. When a user requests a function from an AI server for interaction with a social robot, modular functions can be used to return only the results. Modular functions in AI servers can be easily maintained and changed by each module by the server manager. Compared to existing server systems, modular replaceable AI servers produce more efficient performance in terms of server maintenance and scale differences in the programs performed. Through this, more diverse image deep learning can be included in robot scenarios that allow human-robot interaction, and more efficient performance can be achieved when applied to AI servers for image deep learning in addition to robot platforms.

A Research Study on the Medical-spaces Setting of Mobile-hospitals for Emergency Medical Response (긴급 의료 대응을 위한 이동형병원의 의료공간 설정에 관한 조사 연구)

  • Kim, Sung Hyun;Yang, Nae Won
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.1
    • /
    • pp.7-21
    • /
    • 2022
  • Purpose: As the pandemic period continues, various attempts are being made to new medical spaces in the medical society. Many hospitals, including existing general hospitals, have been effected by infected patients and are showing limitations in patient care capacity. Mobile-hospitals may be the starting point for the development of new environment in the medical society and healthcare facilities which are not replacing the role of existing hospitals. Mobile-hospitals can possibly respond to situations that require medical services and provide emergency care for various demands in connection with existing healthcare facilities. Methods: Through a total of five investigations/analysis, medical functions that can be inserted into mobile-hospitals based on modular architecture are set. The first is the analysis of domestic legal guidelines, the second is the analysis of previous studies, the analysis of emergency medical facilities and other medical spaces of hospitals to be compared, the fourth is the analysis of medical spaces of actual mobile hospital projects. Results: Through five analyses, medical functions applicable to the modular building platform were finally established. Mobile hospitals can be used not only in disaster sites such as infectious diseases, but also in medical underprivileged areas or general hospitals. Therefore, it is necessary to establish medical functions that meet the specificity of mobile hospitals along with the functions of existing fixed medical facilities. Furthermore, various studies such as use in international aid, use in normal times, and connection with other platform-based medical facilities are considered necessary. Implications: Through 5 strategies of analysis, 41 medical functions which can be applied to UNIT are decided and these functions will be placed where medical services will be required.

A Study on Standardization of Data Bus for Modular Small Satellite (모듈화 소형위성의 Data Bus 표준화 방안 연구)

  • Jang, Yun-Uk;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.620-628
    • /
    • 2010
  • Small satellites can be used for various space research and scientific or educational purposes due to advantages in small size, low-cost, and rapid development. Small Satellites have many advantages of application to Responsive Space. Compared to traditional larger satellites, however, Small satellites have many constraints due to limitations in size. Therefore, it is difficult to expect high performance. To approach maximum capability with minimal size, weight, and cost, standard modular platform of Small satellites is necessary. Modularity supports plug-and-play architecture. The result is Small satellites that can be combined quickly and reliably using plug-and-play mechanisms. For communication between modules, standard bus interface is needed. Controller Area Network(CAN) protocol is considered optimum data bus for modular Small satellite. CAN can be applied to data communication with high reliability. Hence, design optimization and simplification can also be expected. For ease of assembly and integration, modular design can be considered. This paper proposes development method for standardized modular Small satellites, and describes design of data interface based on CAN and a method of testing for modularity.

Design, Development and Testing of the Modular Unmanned Surface Vehicle Platform for Marine Waste Detection

  • Vasilj, Josip;Stancic, Ivo;Grujic, Tamara;Music, Josip
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.195-204
    • /
    • 2017
  • Mobile robots are used for years as a valuable research and educational tool in form of available open-platform designs and Do-It-Yourself kits. Rapid development and costs reduction of Unmanned Air Vehicles (UAV) and ground based mobile robots in recent years allowed researchers to utilize them as an affordable research platform. Despite of recent developments in the area of ground and airborne robotics, only few examples of Unmanned Surface Vehicle (USV) platforms targeted for research purposes can be found. Aim of this paper is to present the development of open-design USV drone with integrated multi-level control hardware architecture. Proposed catamaran - type water surface drone enables direct control over wireless radio link, separate development of algorithms for optimal propulsion control, navigation and communication with the ground-based control station. Whole design is highly modular, where each component can be replaced or modified according to desired task, payload or environmental conditions. Developed USV is planned to be utilized as a part of the system for detection and identification of marine and lake waste. Cameras mounted to the USV would record sea or lake surfaces, and recorded video sequences and images would be processed by state-of-the-art computer vision and machine learning algorithms in order to identify and classify marine and lake waste.

Development of a multi-purpose driving platform for Radish and Chinese cabbage harvester (무·배추 수확 작업을 위한 다목적 주행플랫폼 개발)

  • H. N. Lee;Y. J. Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • Radish and Chinese cabbage are the most produced and consumed vegetables in Korea. The mechanization of harvesting operations is necessary to minimize the need for manual labor. This study to develop and evaluate the performance of a multi-purpose driving platform that can apply modular Radish and Chinese cabbage harvesting devices. The multi-purpose driving platform consisted of driving, device control, engine, hydraulic, harvesting, conveying, and loading part. Radish and Chinese cabbage harvesting conducted using the multi-purpose driving platform each harvesting module. The performance of the multi-purpose driving platform was evaluated the field efficiency and loss rate. The total Radish harvesting operation time 34.3 min., including 28.8 min., of harvesting time, 1.9 min., of turning time, and 3.6 min., of replacement time of bulk bag. During Radish harvesting, the field efficiency and average loss rate of the multi-purpose driving platform were 2.0 hr/10a and 3.1 %. Chinese cabbage harvesting operation 49.3 min., including 26.6 min., of harvesting time, 4.6 min., of turning time, and 18.1 min., of replacement time of bulk bag. During Chinese cabbage harvesting, the field efficiency and average loss rate of the multi-purpose driving platform 2.1 hr/10a and 0.1 %. Performance evaluation of the multi-purpose driving platform that harvesting work was possible by installing Radish and Chinese cabbage harvest modules. Performance analysis through harvest performance evaluation in various Radish and Chinese cabbage cultivation environments is necessary.

Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor (후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소)

  • Taehyun Kim;Daekyu Hwang;Bongsang Kim;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.

Design of a Chain-Type Modular Robot (체인형 모둘러 로봇의 설계)

  • Lee, Bo-Hee;Lee, Sang-Kyung;Kong, Jung-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.674-682
    • /
    • 2009
  • The modular robot is one which was developed to get over limit of the space movement for the mobile robot. The chain type robot in particular is connected by series each other and this form expression method is simple and easy to really make a docking method efficiently. However, the related studies were focused on the movement that used to be combination, and the movement of a cell independent mainly does not consist and have a problem to dock only in a direction, not to be connected with all directions. Therefore, we suggested a modular structure for quick, independent movement to solve such a problem and had own autonomy. In addition, we are intended to get some effectiveness for connection mechanism using one locking motor. In this paper, we dealt with the design for the mechanical and electrical points and docking algorithm including communication method. All of the structure is verified with real action experiment through the shape expressions of various application platform.

Development of Intelligent Digital Governor System for Steam Turbine Generator in Buk-Cheju Thermal Power Plant (북제주 화력 발전소 스팀 터빈 발전기용 인텔리전트 디지털 조속기 개발)

  • 전일영;하달규;신명철;김윤식
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.608-613
    • /
    • 1999
  • This thesis aims at developing of a digita governor system for the steam turbine generator on the Buk-Cheju Thermal Power Plant of KEPCO. The steam turbine generator of the Buk-Cheju Thermal Power Plant is modelled. As a hardware platform, a triple modular system which is fitted 32-bit microprocessor of Motorola company to perform the digital governor system is used. The parameters of the PID controller algorithm in the speed control block is tuned on the basis of the estimated model.

  • PDF

Development of Programmable Automation Controllers (PACs) having Multi-Domain Functionality (다양한 도메인 기능을 갖는 PAC 시스템 개발)

  • Kim K.D.;Lee K.J.;Kim H.N.;Oh J.S.;Kim C.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.250-253
    • /
    • 2005
  • A Programmable Automation Controller (PAC) has been developed by Turbotek Co., Ltd. The developed system has multi-domain functionality-including sequence control, motion control and HMI- on a single platform. The PAC also has a common development platform for the design and integration of multi-domain automated systems. Since hardware of the developed system has modular architectures, performance and specification of the controller are determined by combination of specific modules. The developed system employs de facto standards such as OPC interface that allow users to easily exchange data as part of networked multi-vendor systems.

  • PDF

A PC-Based Open Robot Control System : PC-ORC (PC에 기반을 둔 개방형 로봇제어시스템 : PC-ORC)

  • 김점구;최경현;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.415-425
    • /
    • 2000
  • An open architecture manufacturing strategy intends to integrate manufacturing components on a single platform so that a particular component can be easily added and/or replaced. Therefore, the control scheme based upon the open architecture concept is hardware-independent. In this paper, a modular and object oriented approach for a PC-based open robot control system is investigated. A standard reference model for robot systems, which consists of three modules; hardware module, operating system module, and application software module, is first proposed. Then, a PC-based Open Robot Controller(PC-ORC), which can reconfigure robot control systems in various production environments, is developed. The PC-ORC is built upon the object-oriented method, and allows an easy implementation and modification of various modules. The PC-ORC consists of basic softwares, application objects, and additional hardware device on the PC Platform. The application objects are: sequencer, computation unit, servo control, ancillary equipment, external sensor control, and so on. In order to demonstrate the applicability of the PC-ORC, the proposed PC-ORC configuration is applied to an industrial SCARA robot system.

  • PDF