• Title/Summary/Keyword: Modified silica

Search Result 258, Processing Time 0.036 seconds

Chemically Modified Submicron Silica Particulate Extractants for Preconcentration of Mercury(II)

  • Kaur, Anupreet;Gupta, Usha
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1932-1936
    • /
    • 2008
  • A new analytical method using 1-(2-pyridylazo)-2-naphthol modified $SiO_2$ nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of mercury(II) in different water samples. Conditions of the analysis such as preconcentration time, effect of pH, sample volumes, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer $SiO_2$-PAN was found to be 260 ${\mu}molg^{-1}$ at optimum pH and the detection limit (3$\sigma$) was 0.48 ${\mu}gL^{-1}$. The extractant showed rapid kinetic sorption. The adsorption equilibrium of mercury(II) on nanometer $SiO_2$-PAN was achieved just in 5 mins. Adsorbed mercury(II) was easily eluted with 5 mL of 6 M hydrochloric acid. The maximum preconcentration factor was 50. The method was applied for the determination of trace amounts of mercury(II) in various water samples and industrial effluents.

Surface modifiers on the waterglass aerogels prepared by ambient drying process (상압건조 물유리 에어로젤에 대한 표면개질제의 영향)

  • Kim, Tae-Jung;Nahm, Sahn;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.173-178
    • /
    • 2006
  • Silica aerogel with ultra low density and high porosity has been focused on versatile application due to its fascinating properties. Ambient drying process of waterglass, in this study was researched to fabricate a crack-free monolith body in the point view of cost effective way. Wet gel was obtained by removing of $Na^{+}$ ions in waterglass, which contains 8 wt% of $SiO_{2}$. Xylene, which has a low vapor pressure, was used as a solution substitutor to prevent the formation a cracks during drying. Various surface modifiers like as hexamethyldisilazane (HMDSZ), trimethylchlorosilane (TMCS), methyltriethoxylsilane (MTES), methyltrimethoxysilane (MTMS) and phenyltriethoxysilane (PTES) were used in order to improve hydrophobicity of the waterglass Silica aerogel. Some physical properties of the surface modified aerogels were investigated by FT-IR, TGA, BET and SEM. Hydrophobicity and hydrophilicity of Silica aerogel is attributed to the Si-OH bond and the non-polar C-H bond groups on the surface of aerogel. Crack-free waterglass aerogel with >90 % of porosity, 17 nm of pore size and <0.15 $g/cm^{3}$ of density was prepared. HMDSZ and TMCS are effective as a surface modifier

Development of fine grained concretes for textile reinforced cementitious composites

  • Daskiran, Esma Gizem;Daskiran, Mehmet M.;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.279-295
    • /
    • 2016
  • A new innovative composite material is textile reinforced cementitious composite (TRCC). To achieve high flexural performance researchers suggest polymer modification of TRCC matrices. In this study, nine ready mix repair mortars commonly used in construction industry and the production of TRCC elements were examined. Mechanical properties such as compressive and flexural strength, drying shrinkage were studied. Being a significant durability concern, alkali silica reaction tests were performed according to related standards. Results showed that, some ready repair mortar mixes are potentially reactive due to the alkali silica reaction. Two of the ready mortar mixes labelled as non-shrinkage in their technical data sheets showed the highest shrinkage. In this experiment, researchers designed new matrices. These matrices were fine grained concretes modified with polymer additives; latexes and redispersible powders. Two latexes and six redispersible powder polymers were used in the study. Mechanical properties of fine grained concretes such as compressive and flexural strengths were determined. Results showed that some of the fine grained concretes cast with redispersible powders had higher flexural strength than ready mix repair mortars at 28 days. Matrix composition has to be designed for a suitable consistency for planned production processes of TRCC and mechanical properties for load-carrying capacity.

SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds

  • Kim, Wook-Soo;Lee, Dong-Hyun;Kim, Il-Jin;Son, Min-Jin;Kim, Won-Ho;Cho, Seong-Gyu
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.776-784
    • /
    • 2009
  • N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan $\delta$(at $0^{\circ}C$ and $60^{\circ}C$) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.

Optimum Mix Proportion of Latex Modified Repair Mortar for Agricultural Concrete Structures (농업용 콘크리트 구조물을 위한 라텍스 개질 보수용 모르타르의 적정 배합비 도출)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Park, Seong-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.37-46
    • /
    • 2007
  • The service life of agricultural concrete structures is designed in about 30 to 100 years, but actual service lift is estimated in an average 18 years. Therefore, as the service life of the agricultural concrete structures increases, necessity of repair by aging from various environment condition exposure increases. This study was to determinate the optimum mix proportion of latex modified repair mortar and to improve the durability performance of agricultural concrete structures. The physical and mechanical tests of latex modified repair mortar were performed. Tests of flow, compressive strength, flexural strength and bond strength tests were conducted. Test results show that the optimum nex proportion of latex modified repair mortar, when used in 5% latex volume fraction (weight of cement), 1.5% antifoaming agent (weight of latex), 0.2% PVA fiber volume fraction, 1:2 (binder-sand ratio), 10% silica fume replacement ratio (weight of cement), could result in best performance for the repair of agricultural concrete structures.

Optimum Mix Proportions of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure (수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 적정 배합비 도출)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Lee, Sang-Woo;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.43-50
    • /
    • 2007
  • The purpose of this study was to determine the optimum mix proportion of latex modified mortar for agricultural underwater concrete structures repair. The experimental variables included a latex and antiwashout admixture amount, binder-sand ratio, water-binder ratio. This study were evaluated a repair performance and environment effect of latex modified repair mortar for agricultural underwater concrete structures. The pH test was conducted to evaluated the environmental effect and the flow test was peformed to evaluated the workability. Also, compressive, flexural and bond tests were conducted. Test results show that the optimum mix proportion of latex modified repair mortar for agricultural underwater concrete structures, was achieved by 1:1.5 binder-sand ratio, 5% latex ratio (weight of binder), 1.3% antiwashout admixture ratio (weight of binder), 0.33 water-binder ratio and 10% silica lune replacement ratio (weight of cement). The environmental effect and repair performance of optimum mix proportion satisfied all target performance.

Spectroscopic Analysis of Silica Nanoparticles Modified with Silane Coupling Agent (실란 커플링제에 의해 표면이 개질된 실리카 나노입자의 분광학적 분석)

  • Song, Seong-Kyu;Kim, Jung-Hye;Hwang, Ki-Seob;Ha, Ki-Ryong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • In this study, we used 3-(trimethoxysilyl)propylmethacrylate(MPS) silane coupling agent for surface modification of silica nanoparticles. We studied effects of reaction conditions such as solvent pH, MPS hydrolysis time, reaction time, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, on the surface modification reactions of silica nanoparticles. Fourier Transform Infrared Spectroscopy(FTIR), Elemental Analysis(EA) and solid state crosspolarization magic angle spinning(CP/MAS) Nuclear Magnetic Resonance Spectroscopy(NMR) techniques were used to determine the type and the degree of surface modification. We found MPS reacts preferentially with Si-OH groups of the silica nanoparticles as monomeric form at solvent pH = 4.5. But increasing hydrolysis time of MPS from 30 mins to 90 mins, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, we found that MPS reacts preferentially with Si-OH groups of the silica nanoparticles as oligomeric form.

A study on the differentiation of MC3T3-E1 incubated on the layer-built silica/polycaprolactone non-woven fabric produced by electrospinning (전기방사법으로 제조된 실리카/폴리카프로락톤 적층형 부직포에 배양한 골아 세포의 중식, 분화에 관한 연구)

  • AN, Min-Kuk;Kim, Kyoung-Hwa;Kim, Tae-II;Lee, Yong-Moo;Rhee, Sang-Hoon;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.115-124
    • /
    • 2007
  • Silica is known as a promising osteoconductive material, and polycaprolactone is a bioactive and degradable material. The purpose of this study was to monitor the differentiation of MC3T3-E1 cells cultured on the layer-built silica/poly caprolactone non-woven fabric produced by electrospinning. Non-woven fabric (silica, polycaprolactone, PSP, SPS) was made by electrospinning and they were inserted in the 48 well cell culture plate. MC3T3-E1 cells were prepared by subculture. Cells were seeded to each well $1{\times}10^5$ concentration per well. Dulbecco's modified eagle medium with 10% FBS and 1% antibiotic-antimycotic solution was used. Confocal laser scanning microscope was taken 4 hours after incubation (95% air. 5% $CO_2$, $37^{\circ}C$). Cell proliferation was monitored by spectrophotometer on 1, 7, 14 days, and the morphology of the growing cells was observed by field emission scanning electron microscope. To monitor the differentiation of osteoblasts on the materials, MC3T3-E1 cells were incubated in 48 well culture plate after seeding with the density of $1{\times}10^5$ concentration. Then ELISA kit & EIA kit were used on to assess osteocalcin and osteopontin expression respectively. The other conditions were the same as above. MC3T3-E1 cells were proliferated well on all of the materials. There were no statistical differences among them. The osteopontin expression of silica, PSP, SPS was significantly higher than other groups on day 3 (p/0,05), but after that time, there were no statistically signigicant differences. The osteocalcin expression was significantly higher in silica and PSP than other groups on day 14. These findings show that PSP was as good as silica on the effect of osteoblast differentiation. The PSP non-woven fabric may have the possibility as bone graft materials.

Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete

  • Rashad, Alaa M.;Seleem, Hosam El-Din H.;Shaheen, Amr F.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.69-81
    • /
    • 2014
  • In this study, portland cement (PC) has been partially replaced with a Class F fly ash (FA) at level of 70 % to produce high-volume FA (HVFA) concrete (F70). F70 was modified by replacing FA at levels of 10 and 20 % with silica fume (SF) and ground granulated blast-furnace slag (GGBS) and their equally combinations. All HVFA concrete types were compared to PC concrete. After curing for 7, 28, 90 and 180 days the specimens were tested in compression and abrasion. The various decomposition phases formed were identified using X-ray diffraction. The morphology of the formed hydrates was studied using scanning electron microscopy. The results indicated higher abrasion resistance of HVFA concrete blended with either SF or equally combinations of SF and GGBS, whilst lower abrasion resistance was noted in HVFA blended with GGBS.

Nanospace Confinement of Conducting Polymers using Mesoporous Silica and Organosilica

  • Itahara, Hiroshi;Inagaki, Shinji;Asahi, Ryoji
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.277-277
    • /
    • 2006
  • Conducting polymers (e.g. poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylen vinylene] (MEH-PPV)) confined in one-dimensional nanoscale channels of mesoporous materials, are expected to lead the novel applications for electroconductive and optoelectronic devices. We investigated the adsorption behavior of MEH-PPV on organically surface-modified mesoporous silica (FSM-16) and mesoporous organosilica. The amount of the confined MEH-PPV was found to strongly depend on the surface modifications of the mesoporous materials. The optical absorption edge of the confined MHE-PPV was clearly blue-shifted when compared to that of a free MHE-PPV.

  • PDF