• Title/Summary/Keyword: Modified electrode

Search Result 497, Processing Time 0.024 seconds

Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells (고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

Poly(anthranilic acid) Microspheres: Synthesis, Characterization and their Electrocatalytic Properties

  • Ranganathan, Suresh;Raju, Prabu;Arunachalam, Vijayaraj;Krishnamoorty, Giribabu;Ramadoss, Manigandan;Arumainathan, Stephen;Vengidusamy, Narayanan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1919-1924
    • /
    • 2012
  • Poly(anthranilic acid) was synthesized by rapid mixing method using 5-sulphosalicylic acid as a dopant. The synthesized polymer was characterized by various techniques like FT-IR, UV-Visible, and X-ray diffraction $etc.$, The FT-IR studies reveal that the 5-sulphosalicylic acid is well doped within the polymer. The morphological property was characterized by field emission scanning electron microscopic technique. The electrochemical properties of the polymer were studied by cyclic voltammetric method. The synthesized polymer was used to modify glassy carbon electrode (GCE) and the modified electrode was found to exhibit electrocatalytic activity for the oxidation of uric acid (UA).

Electrochemical Immunosensor Using the Modification of an Amine-functionalized Indium Tin Oxide Electrode with Carboxylated Single-walled Carbon Nanotubes

  • Aziz, Md.Abdul;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1171-1174
    • /
    • 2007
  • We have developed an electrochemical immunosensor that combines the electrocatalytic property of carbon nanotube and the low background current of indium tin oxide (ITO) electrode. A partial monolayer of carboxylated single-walled carbon nanotube (CCNT) is covalently formed on an ITO electrode modified with amine-terminated phosphonic acid. Nonspecifically adsorbed avidin on the hydrophobic sidewalls of CCNT is used to immobilize biotinylated antibody and to reduce the nonspecific binding to CCNT. The biotinylated antimouse IgG bound on avidin and the antimouse IgG conjugated with alkaline phosphatase (ALP) sandwiches a target mouse IgG. ALP catalyzes the conversion of p-aminophenyl phosphate monohydrate into p-aminophenol, which is electrocatalytically oxidized to p-quinone imine on CCNT surface. Moderate electrocatalytic electrode obtained with the combination of CCNT and ITO allows low detection limit (0.1 ng/ mL).

Green Synthesized Cobalt Nano Particles for using as a Good Candidate for Sensing Organic Compounds

  • Siada, S. O. Ranaei
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.111-115
    • /
    • 2015
  • In this work electrochemical oxidation of Ascorbic acid (AA) on the surface of Cobalt nano particle modified carbon paste electrode (CoNPsMCPE) was studied in alkaline media. CoNPs were green synthesized using Piper longum and a mixture of 5% (w/w) of it were made with carbon paste. CoNPs showed good electrocatalytic activity in alkaline media. Cyclic voltammetry (CV) and chronoamperometry (CA) were used to study the electrochemical performance of CoNPsMCPE. The number of monolayers on the surface of electrode was calculated as 1.08×109 mol cm−2 that is equal to that of metal Cobalt electrode. Diffusion coefficient of AA was determined using CA analysis which was equal to 1.5×10−6cm2 s−1.

Polypyrrole Modified Electrode as a Nitrate Sensor

  • Sung Chul Kang;Keun-Sun Lee;Jin-Doo Kim;Kang-Jin Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.124-126
    • /
    • 1990
  • The potentiometric response behavior of a polypyrrole(PPy) coated Pt electrode to nitrate ion has been studied. The electrode shows a nernstian behavior with a slope of 59 mV over 0.50 M to $1.0{\times}10^{-3}M\;NO_3\;^-$ and a detection limit of $1.0{\times}10^{-4}M\;NO_3\;^-$. The response of the electrode is fast and the selectivities for $I^-,\;ClO_4\;^-,\;and\;IO_4\;^-$ are found to be improved. The effect of pH on the potential response to $NO_3\;^-$ is compared with the existing nitrate ion selective electrodes.

A modified electrode by a facile green preparation of reduced graphene oxide utilizing olive leaves extract

  • Baioun, Abeer;Kellawi, Hassan;Falah, Ahamed
    • Carbon letters
    • /
    • v.24
    • /
    • pp.47-54
    • /
    • 2017
  • Different phytochemicals obtained from various natural plant sources are used as reduction agents for preparing gold, copper, silver and platinum nanoparticles. In this work a green method of reducing graphene oxide (rGO) by an inexpensive, effective and scalable method using olive leaf aqueous extract as the reducing agent, was used to produce rGO. Both GO and rGO were prepared and investigated by ultraviolet and visible spectroscopy, Fourier-transform infrared, scanning electron microscopy, atomic force microscopy, thermogravimetric analysis, cyclic voltammetry, X-ray photoelectron spectra, electrochemical impedance spectroscopy and powder X-ray diffraction.

Differential Pulse Voltammetry of Lead(II) ton at Nation- EDTA-Glycerol Modified Glassy Carbon Electrodes (Nation-EDTA Glycerol이 수식된 유리탄소전극에서 납(II) 이온의 펄스차이전압전류법)

  • 박상희;박찬주;박은희;고영춘;정근호
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.53-58
    • /
    • 2002
  • A method for the determination of lead(II) ion using a nafion-EDTA(ethylene diamine tetraacetic acid)-glycerol modified glassy carbon electrode was proposed. Lead(II) ion is accumulated at the electrode by complexation and electrostatic attraction with nafion-EDTA-glycerol and detected at -0.560$\pm$0.015V (vs. Ag/AgCl) by differential pulse voltammetry. For the determination of lead(II) ion, a standard calibration curve if obtained from 10$^{-9}$ M lead(II) ion to 10$^{-7}$ M, and the detection limit(3s) is as low as 5.0$\times$10$^{-10}$ M.

Voltammetric Determination of Ag(I) ion using Carbon Paste Electrode Modified with $Ph_2O_2S_3$ ($Ph_2O_2S_3$로 변성된 탄소반죽전극에 의한 Ag(I) 이온의 전압-전류법적 정량)

  • Lee, Ihn Chong
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.171-175
    • /
    • 1999
  • Carbon paste electrodes, modified with podands containing more than two sulfur atoms, have been employed for the voltammetric determination of Ag(I) ion from aqueous solution. The voltammetric response was characterized with respect to paste composition, preconcentration method, kind of anion, variation of pH, Ag(I) ion concentration, and possible interferences. Linear calibration curves were obtained for Ag(I) ion concentration ranging from $1.0{\times}10^{-6}$ to $9.0{\times}10^{-5}M$, and detection limit was $5.0{\times}10^{-7}M$.

  • PDF

Voltammetric Determination of Ag(I) ion with Carbon Paste Electrode Modified with Macrocyclic Ligand Containing Oxygen and Nitrogen as Ligating Atoms (주게원자로 산소와 질소를 포함하는 거대고리 리간드로 변성된 탄소반죽전극에 의한 Ag(I) 이온의 전압-전류법적 정량)

  • Lee, Ihn Chong
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.91-95
    • /
    • 2002
  • Carbon paste electrodes, modified with 5,6,14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadeca-5,14-diene containing different ligating atoms of oxygen and nitrogen, have been employed for the voltammetric determination of Ag(I) ion from aqueous solution. The voltammetric response was characterized with respect to paste composition, preconcentration method, kind of anion, variation of pH, Ag(I) ion concentration, and possible interferences. Linear calibration curves were obtained for Ag(I) ion concentration ranging from $3.0{\times}10^{-6}M$ to $8.0{\times}10^{-5}M$, and detection limit was $8.5{\times}10^{-7}M$.

Ionic Size Effect on the Double Layer Properties: A Modified Poisson-Boltzmann Theory

  • Lou, Ping;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2553-2556
    • /
    • 2010
  • On the basis of a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, the analytic expression for the effect of ionic size on the diffuse layer potential drop at negative charge densities has been given for the simple 1:1 electrolyte. It is shown that the potential drop across the diffuse layer depends on the size of the ions in the electrolyte. For a given electrolyte concentration and electrode charge density, the diffuse layer potential drop in a small ion system is smaller than that in a large ion system. It is also displayed that the diffuse layer potential drop is always less than the value of the Gouy-Chapman (GC) theory, and the deviation increases as the electrode charge density increases for a given electrolyte concentration. These theoretical results are consistent with the results of the Monte-Carlo simulation [Fawcett and Smagala, Electrochimica Acta 53, 5136 (2008)], which indicates the importance of including steric effects in modeling diffuse layer properties.