• Title/Summary/Keyword: Modified TANK model

Search Result 62, Processing Time 0.024 seconds

Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm (유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화)

  • Kim, Sun-Joo;Jee, Yong-Geun;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

A Tank Model Shell Program for Simulating Daily Streamflow from Small Watersheds (Tank모형 쉘프로그램을 이용한 중소하천의 일유출량 추정)

  • 박승우
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.47-61
    • /
    • 1993
  • A menu-driven shell program DSFS (Daily Streamflow Simulation Model), that can process the input data, optimize the parameters, execute the program, and graphically display the results of a modified tank model, was developed and applied to simulating daily streamflow from small watersheds. The model defines daily watershed evapotranspiration losses from potential values multiplied by monthly landuse coefficients and correction factors for soil water storage levels. The parameters were calibrated using observed hydrologic data for fifteen watersheds, and the results were correlated with watershed parameters to define empirical relationships. The proposed model was tested with streamflow data of ungaged conditions, and the simulation results overestimated the annual runoff.

  • PDF

Primal-Dual Neural Network for Linear Programming (선형계획을 위한 쌍대신경망)

  • 최혁준;장수영
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.1
    • /
    • pp.3-16
    • /
    • 1992
  • We present a modified Tank and Hopfield's neural network model for solving Linear Programming problems. We have found the fact that the Tank and Hopfield's neural circuit for solving Linear Programming problems has some difficulties in guaranteeing convergence, and obtaining both the primal and dual optimum solutions from the output of the circuit. We have identified the exact conditions in which the circuit stops at an interior point of the feasible region, and therefore fails to converge. Also, proper scaling of the problem parameters is required, in order to obtain a feasible solution from the circuit. Even after one was successful in getting a primal optimum solution, the output of the circuit must be processed further to obtain a dual optimum solution. The modified model being proposed in the paper is designed to overcome such difficulties. We describe the modified model and summarize our computational experiment.

  • PDF

Sensitivity Analysis using TPA for Slosh Noise of Fuel Tank (TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석)

  • Cha, Hee-Bum;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.356-360
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

  • PDF

Sensitivity Analysis Using TPA for Slosh Noise of Fuel Tank (TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석)

  • Cha, Hee-Bum;Yoon, Seong-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.766-770
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method (수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석)

  • Park, Jong-Ryul;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.628-635
    • /
    • 2001
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The effective masses and heights for the tank contents are presented for engineering design model.

  • PDF

The Development of Pressure Regulator of Propellant Tank for KSR-III (KSR-III 추진제 탱크 압력 조절용 레귤레이터 개발)

  • 정영석;조기주;조인현;김용욱;오승협
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.47-58
    • /
    • 2002
  • The pressure regulator has been developed as a pressure-control device of propellant tank in KSR-III. The pressurization system of KSR-III is a basic pressurization system composed of pressurant, He tank and propellant tank. The pressure-control regulator is the most important part of gas-pressurized feed system along with He tank, pyrovalve and He fill valve. The first model of the regulator is tested to satisfy in leakage, strength and basic performance. The second model is tested in the overall test of the KSR-III propulsion system using water. From the test result of the second model, we conclude that the capacity of valve(Cv) must be increased in real system. The third model is modified and tested in the overall test of KSR-III propulsion system using propellant. Finally, the pressure-control regulator is qualified from firing test.

The Comparative Analysis of Optimization Methods for the Parameter Calibration of Rainfall-Runoff Models (강우-유출모형의 매개변수 보정을 위한 최적화 기법의 비교분석)

  • Kim, Sun-Joo;Jee, Yong-Geun;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.3-13
    • /
    • 2005
  • The conceptual rainfall-runoff models are used to predict complex hydrological effects of a basin. However, to obtain reliable results, there are some difficulties and problems in choosing optimum model, calibrating, and verifying the chosen model suitable for hydrological characteristics of the basin. In this study, Genetic Algorithm and SCE-UA method as global optimization methods were applied to compare the each optimization technique and to analyze the application for the rainfall-runoff models. Modified TANK model that is used to calculate outflow for watershed management and reservoir operation etc. was optimized as a long term rainfall-runoff model. And storage-function model that is used to predict real-time flood using historical data was optimized as a short term rainfall-runoff model. The optimized models were applied to simulate runoff on Pyeongchang-river watershed and Bocheong-stream watershed in 2001 and 2002. In the historical data study, the Genetic Algorithm and the SCE-UA method showed consistently good results considering statistical values compared with observed data.

Performance Ratings According to Characteristics of Thermosyphon Solar Hot Water System (자연대류형 태양열온수기의 특성별 성능평가에 관한 연구)

  • Kang, Y.H.;Kwak, H.Y.;Yoo, C.G.;Yoon, H.G.;Kang, M.C.;Lee, D.G.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.9-17
    • /
    • 2000
  • To obtain thermal performance data, an experiment was performed with the two selected thermosyphon systems. The system parameters obtained by experimental data were used to perform TRNSYS simulation and verified TRNSYS model of thermosyphon solar hot water system. The thermosyphon solar hot water system was TYPE 145 which is modified from non-linear model. This model can describe heat exchange type and non-linear efficiency equation. It is possible to analyze the annual energy rate with efficiency equation and system specification. In this paper, we could compare the annual performance of the coil heat exchanger with that of the tank-in-tank heat exchanger. Under the same efficiency and parameter, heat exchange, drain, initial tank temperature, ratio of tank volume over collector area(V/Ac), regional annual performance rating were performed.

  • PDF

A Streamflow Network Model for Daily Water Supply and Demands on Small Watershed (1) -Simulating Daily Streamflow from Small Watersheds- (중소유역의 일별 용수수급해석을 위한 하천망모형의 개발(I) - 중소유역의 일유출량 추정 -)

  • 허유만;박창헌;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.40-49
    • /
    • 1993
  • The Objectives of this paper were to develop a modified tank model that is capable of simulating daily streamflow from a small watershed using daily watershed evapotranspiration and to test the applicability of the model to different watersheds. Tank model was restructured to consist of three series of tanks, each of which may mathematically reflect watershed runoff mechanisms from different components of surface runoff, interflow, and baseflow. And pan evaporation was correlated to potential evapotranspiration estimated from a combination method, and was multiplied by monthly crop and landuse coefficients, and watershed storage coefficient to estimate the watershed evapotranspiration losses. Ten watersheds were selected to calibrate model parameters that were defined using an optimization scheme, and the results were correlated with watershed parameters. Simulated daily runoff was compared to the observed ones from the tested watersheds. The simulating results were in good agreement with the observed values when optimal and calibrated parameters were used. Ungaged conditions were also applied to compare simulated values to the observed. And the results were in fair conditions for all the tested watersheds which differ considerably in their sizes, landuse types, and physiological features.

  • PDF