• Title/Summary/Keyword: Modified Power-law

Search Result 131, Processing Time 0.022 seconds

Numerical Analysis of Branch Flows for Newtonian and Non-Newtonian Fluids (뉴턴유체와 비뉴턴유체에 대한 분기관 유동의 수치해석)

  • 서상호;유상신;노형운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2762-2772
    • /
    • 1994
  • Branch flows for Newtonian and non-Newtonian fluids are simulated by the finite volume method. The modified power-law model is employed as a constitutive equation of the non-Newtonian fluids. Numerical analyses are focused on understanding of flow patterns for different values of branch angles, diameter ratios and Reynolds numbers. The numerical results are compared with the existing experimental data. The calculated velocity profiles and pressure variations are in good agreement with available experimental results.

Ionic Conductivity in Lithium-Borate-Tantalate Compound Glasses

  • Kwon, Oh Hyeok;Yang, Yong Suk;Rim, Young Hoon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1873-1878
    • /
    • 2018
  • We have investigated the ionic conductivity and dielectric relaxation in $Li_2B_4O_7$ (LBO) and $Li_2O-B_2O_3-Ta_2O_5$ (LBTO) glasses. The sample was synthesized by using the melt quenching method. The frequency dependence of the electrical data from the LBO and LBTO glasses has been analyzed in the frameworks of the impedance Cole-Cole formalism and the universal power-law representation driven by the modified fractional Rayleigh equation. The potential barriers in the LBO and the LBTO glasses turn out to be the same. Comparing with the dc and ac activation energies of the LBO glass, these energies of the LBTO glass decrease due to the increasing Coulomb interaction of inter-cationic interaction.

Shear correction factors of a new exponential functionally graded porous beams

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Tarek Merzouki;AhmedAmine Daikh;Aman Garg;Abdelouahed Tounsi;Mohamed A. Eltaher;Mohamed-Ouejdi Belarbi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This article introduces a novel analytical model for examining the impact of porosity on shear correction factors (SCFs) in functionally graded porous beams (FGPB). The study employs uneven and logarithmic-uneven modified porosity-dependent power-law functions, which are distributed throughout the thickness of the FGP beams. Additionally, a modified exponential-power law function is used to estimate the effective mechanical properties of functionally graded porous beams. The correction factor plays a crucial role in this analysis as it appears as a coefficient in the expression for the transverse shear stress resultant. It compensatesfor the assumption that the shear strain is uniform across the depth of the cross-section. By applying the energy equivalence principle, a general expression for static SCFs in FGPBs is derived. The resulting expression aligns with the findings obtained from Reissner's analysis, particularly when transitioning from the two-dimensional case (plate) to the one-dimensional case (beam). The article presents a convenient algebraic form of the solution and provides new case studies to demonstrate the practicality of the proposed formulation. Numerical results are also presented to illustrate the influence of porosity distribution on SCFs for different types of FGPBs. Furthermore, the article validates the numerical consistency of the mechanical property changesin FG beams without porosity and the SCF by comparing them with available results.

A Study on the Pump Performance Analysis by Modifying the Impeller for a Seawater Pump using CFD (임펠러 가공량에 따른 펌프성능의 해석적 연구)

  • Chang, Young Ki;Song, Woo Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2012
  • A seawater pumps in the nuclear power plant is responsible for providing cooling water to other components all the time. Because of the depreciation, the seawater pump with current impeller consumes too much power for maintaining the total head. Therefore the objective of this study is to reduce power with maintaining certain the total head by cutting the current impeller. By using a commercial CFD code, FLUENT, the overall performance of seawater pump with current and modified impeller was simulated. Also Affinity law was applied at pumps with various impeller diameter and evaluated the validity of the affinity law. The numerical results show that the pump efficiency is quite irrelevant to the diameters of the impellers and the pump efficiency becomes worse over the designed flow rate. And affinity law result and numerical one show good agreements at small change of impeller diameter. One of the impeller diameters was decided to modify and was applied to the nuclear power plant with the numerical study above.

Free vibration of imperfect sigmoid and power law functionally graded beams

  • Avcar, Mehmet
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.603-615
    • /
    • 2019
  • In the present work, free vibration of beams made of imperfect functionally graded materials (FGMs) including porosities is investigated. Because of faults during process of manufacture, micro voids or porosities may arise in the FGMs, and this situation causes imperfection in the structure. Therefore, material properties of the beams are assumed to vary continuously through the thickness direction according to the volume fraction of constituents described with the modified rule of mixture including porosity volume fraction which covers two types of porosity distribution over the cross section, i.e., even and uneven distributions. The governing equations of power law FGM (P-FGM) and sigmoid law FGM (S-FGM) beams are derived within the frame works of classical beam theory (CBT) and first order shear deformation beam theory (FSDBT). The resulting equations are solved using separation of variables technique and assuming FG beams are simply supported at both ends. To validate the results numerous comparisons are carried out with available results of open literature. The effects of types of volume fraction function, beam theory and porosity volume fraction, as well as the variations of volume fraction index, span to depth ratio and porosity volume fraction, on the first three non-dimensional frequencies are examined in detail.

Creep life Prediction for W.M. of High Cr-Mo Steel using Modified Power-law (고 Cr-Mo강의 수정멱수법칙을 이용한 W.M. 크리프 수명예측)

  • An, Jong-Kyo;Yu, Hyo-Sun;Yang, Sung-Mo;Kang, Hee-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.951-956
    • /
    • 2008
  • The high temperature creep properties of the generating plant's high temperature tube, pipe and header and such are very significant in accordance with long-time exposure to the high temperature and pressure environment. Not only this, but as the welding procedure is compulsory for the cohesion of components, the creep properties regarding the local microstructures of steel weldment are very important. In order to understand the creep properties regarding the local microstructures of steel weldment, the SP-Creep test which is easy to get sample from the field component was conducted. The local microstructure of steel weldment, that is, W.M. and B.M.'s microstructures were observed using the SEM. The rupture time of W.M. was longer as 110 % averagely in a same condition, which is the consequence of the difference of the microstructure. Each lethargy coefficient of B.M. and W.M. is evaluated by the relation among the temperature, load and the rupture time from SP-Creep Test. The life estimation equation can be induced by the transformation of Power-law. B.M. and W.M. for each $550\;^{\circ}C$ and $575\;^{\circ}C$, the very similar to normal temperature of the domestic thermal power generation in working, are estimated.

A Study on Heat Transfer Enhancement for a Shear-Thinning Fluid in Triangular Ducts (삼각형 단면 덕트 내의 Shear-Thinning 유체에 대한 열전달 촉진에 관한 연구)

  • Lee, Dong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3808-3814
    • /
    • 2011
  • The prediction of heat transfer and pressure drops in the exchanger passages is a clue to the problem of heat exchanger design. In order to make such predictions for non-Newtonian fluids, it is necessary to know the relation between the viscous properties of the fluid and the wall shear rate in the duct. This study deals with the limits of validity of the power law equation. The useful methodology of the present research involves a consideration of a more general equation which has power law and Newtonian behavior as asymptotes. It isconcluded that use of the power law equation outside of its applicability range can lead to serious errors inpredicting the heat transfer and pressure drops. The present computational results of the friction factors times Reynolds number for shear-thinning fluid flows in a triangular duct are compared with previous published results, showing agreement with 0.13 % in Newtonian region and 2.85 % in power law region. These shear-thinning fluid results also showed the 12% increase of convective heat transfer enhancement compared with Newtonian heat transfer.

Vibration analysis of different material distributions of functionally graded microbeam

  • Tlidji, Youcef;Zidour, Mohamed;Draiche, Kadda;Safa, Abdelkader;Bourada, Mohamed;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.637-649
    • /
    • 2019
  • In the current research paper, a quasi-3D beam theory is developed for free vibration analysis of functionally graded microbeams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by three functions, power function, symmetric power function and sigmoid law distribution. The modified coupled stress theory is used to incorporate size dependency of micobeam. The equation of motion is derived by using Hamilton's principle, however, Navier type solution method is used to obtain frequencies. Numerical results show the effects of the function distribution, power index and material scale parameter on fundamental frequencies of microbeams. This model provides designers with guidance to select the proper distributions and functions.

A Six-Phase CRIM Driving CVT using Blend Modified Recurrent Gegenbauer OPNN Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1438-1454
    • /
    • 2016
  • Because the nonlinear and time-varying characteristics of continuously variable transmission (CVT) systems driven by means of a six-phase copper rotor induction motor (CRIM) are unconscious, the control performance obtained for classical linear controllers is disappointing, when compared to more complex, nonlinear control methods. A blend modified recurrent Gegenbauer orthogonal polynomial neural network (OPNN) control system which has the online learning capability to come back to a nonlinear time-varying system, was complied to overcome difficulty in the design of a linear controller for six-phase CRIM driving CVT systems with lumped nonlinear load disturbances. The blend modified recurrent Gegenbauer OPNN control system can carry out examiner control, modified recurrent Gegenbauer OPNN control, and reimbursed control. Additionally, the adaptation law of the online parameters in the modified recurrent Gegenbauer OPNN is established on the Lyapunov stability theorem. The use of an amended artificial bee colony (ABC) optimization technique brought about two optimal learning rates for the parameters, which helped reform convergence. Finally, a comparison of the experimental results of the present study with those of previous studies demonstrates the high control performance of the proposed control scheme.