• Title/Summary/Keyword: Modified Point Stress Criterion

Search Result 10, Processing Time 0.028 seconds

The Notched Strength and Fracture Criterion in Plain Woven Glass/Epoxy Composites With a Crack (노치부를 가진 Glass/Epoxy 복합재료의 노치강도 평가와 불안정 파괴조건)

  • 김정규;김도식
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.57-67
    • /
    • 1993
  • The fracture behavior of plain woven glass/epoxy composite plates with a crack is investigated under static tensile loading. It is shown in this paper that the characteristic length associated with the point stress criterion depends on the crack length. To predict the not ched tensile strength, the point stress criterion proposed by Whitney and Nuismer are modified. An excellent agreement is found between the experimental results and the analytical prediction of the modified point stress criterion. The condition of unstable crack growth in the presence of a per-existing flaw(machined notch) is examined by means of the maximum stress intensity factor $K_max$ using maximumload P$_max$. The values of $K_max$ evaluated from energy release rate G$_max$(the compliance me thod) indicate a wide difference. Therefore in regard to anisotropy and heterogeneity of the composite materials studied, the modified shape correction factor f(a/W) is obtained. $K_max$evaluated by the compliance method a little or insignificantly depends on the initial crack length a, the specimen thickness B, the crack angle .theta. and the specimen geometry.

  • PDF

Notched Strength and Fracture Criterion of Glass/Epoxy Plain Woven Composites Containing Circular Holes (원공을 가진 Glass/Epoxy 복합재료의 노치강도 및 파괴조건)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1285-1293
    • /
    • 1992
  • The fracture behavior of glass/epoxy plain woven composite plates containing circular holes is experimentally investigated to examine the effects of hole size and specimen width on notched tensile strength. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and specimen width. For predicting the notched tensile strength, a modified failure criterion is developed. An excellent agreement is found between the experimental results and the analytical prediction of modified failure criterion. The notched strength and the characteristic length have an increase and decrease relations. When the unstable fracture occured, the critical crack length equivalent for the damage zone size at the edge of hole is about twice the characteristic length. The critical energy release rate G$_{c}$ is independent of hole size(0.03 .leq. 2R/W .leq. 0.5) under the same specimen width. However G$_{c}$ increases with an increase in specimen width which can be explained by stress relaxation due to the notch insensitivity.ity.

The Fatigue Strength and the Fatigue Life Prediction in Plain Woven Glass/Epoxy Composite Plates (Glass/Epoxy 복합재료의 피로강도평가 및 피로수명예측)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2475-2482
    • /
    • 1993
  • The effects of the hole size(2R) and the specimen width(W) on the fatigue strength and the fatigue life in plain woven glass/epoxy composite plates are experimentally investigated under constant amplitude tensile fatigue loading. It is shown in this study that the notch sensitivity under fatigue loading is lower than that under static loading. It can be explained by the fact that the stress concentration is relaxed by the damage developed at the boundary of circular hole. To predict the fatigue strength at a specific cycle, the modified point stress criterion represented as a function of the geometry of the specimen(2R and W) is applied. It is found that the model used in the prediction of the notched tensile strength predicts the fatigue strength with reasonable accuracy. A model for predicting the fatigue life in the notched specimen, based on the S-$N_f$, curve in the smooth specimen, is suggested.

Mechanical Analysis of 3D Circular Braided Glass Fiber Reinforced Composites Using Elastic-Plastic Constitutive Equations (탄소성 구성 방정식을 이용한 삼차원 브레이드 복합재료의 역학적 해석)

  • Ryou Hansun;Lee Myoung-Gyu;Kim Jihoon;Chung Kwansoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.147-150
    • /
    • 2004
  • In order to describe the mechanical behavior of highly anisotropic and asymmetric materials such as fiber­reinforced composites, the elastic-plastic constitutive equations were used here based on the recently developed yield criterion and hardening laws. As for the yield criterion, modified Drucker-Prager yield surface was used to represent the orthotropic and asymetric properties of composite materials, while the anisotropic evolution of back­stress was accounted for the hardening behavior. Experimental procedures to obtain the material parameters of the hardening laws and yield surface are presented for 3D Circular Braided Glass Fiber Reinforced Composites. For verification purpose, comparisons of finite element simulations using the elastic-plastic constitutive equations, anisotropic elastic constitutive equations and experiments were performed for the three point bending tests. The results of finite element simulations showed good agreements with experiments, especially for the elastic-plastic constitutive equations with yield criterion considering anisotropy as well as asymmetry and anisotropic back stress evolution rule.

  • PDF

Measurement of the mixed mode fracture strength of green sandstone using three-point bending specimens

  • Li, Yifan;Dong, Shiming;Pavier, Martyn J.
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2020
  • Three-point bending specimens have been used to investigate the mixed mode fracture of green sandstone. Dimensionless stress intensity factors and T-stresses were calculated first by using the finite element method for various crack lengths, crack angles and span to length ratios. It is shown that three-point bending specimens can provide the whole range of mode mixities from pure mode I to pure mode II, provided suitable values are chosen for the crack angle and span to length ratio. The fracture test results were also used to compare with predictions of different criteria. These comparisons show that modified criteria including the influence of the T-stress agree better with experiment than the conventional criteria but that no one criterion matches perfectly the test results.

Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column (비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가)

  • 주기호;정재호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

The Effect of Hole Size on the Failure Strength and Fracture Toughness in Polymer Matrix Composite Plates (Plastic기 복합재료의 파손강도 및 파괴인성에 미치는 원공크기의 영향)

  • Kim, Jeong-Gyu;Kim, Do-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Abstract The effects of the hole size and the specimen width on the fracture behavior of several fabric composite plates are experimentally investigated in tension. Tests are performed on plain woven glass/ epoxy, plain woven carbon/epoxy and satin woven glass/polyester specimens with a circular hole. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and the specimen width. An excellent agreement is found between the experimental results and the analytical predictions of the modified failure criterion. The notched strength increase with an increase in the damage ratio, which is explained by a stress relaxation due to the formation of damage zone. When the unstable fracture occurred, the critical crack length equivalent for the damage zone is about twice the characteristic length. The critical energy release rate $G_c$ is independent of hole size for the same specimen width. The variation of $G_c$ according to the material system, fiber volume fraction and specimen width relates to the notch sensitivity factor. $G_c$ increases with a decrease in the notch sensitivity factor, which can be explained by a stress relaxation due to the increase of damage zone.

  • PDF

The Study on Notch Strength Characteristics with Circular Hole Notch in A17075/CFRP Layered Composites (원공노치를 갖는 A17075/CFRP 적층 복합재의 노치강도 특성에 관한 연구)

  • 이제헌;김영환;박준수;윤한기
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.58-66
    • /
    • 2000
  • CARALL(Carbon fiber reinforced aluminum laminates) was fabricated with CFRP prepreg and A17075, using a autoclave. The mechanical properties of three samples i.e. A17075, CFRP and CARALL were also investigated as a function of size in circular holes. Theoretical approach into analysing mechanical behaviors near the circular hole notch was carried out to compare with experimental data, furthermore. By the adhesive bonding of A17075 to CFRP, abrupt strength reduction was prevented. From the consideration of modified point stress failure criterion, predicted results was well consistent with the experimental one.

  • PDF

Development of Preconception Health Behavior Scale (임신 전 건강행위 측정도구 개발)

  • Yeom, Gye Jeong;Kim, Il-Ok
    • Women's Health Nursing
    • /
    • v.25 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • Purpose: This study was designed to develop a valid and reliable scale for the evaluation of preconception health behavior in women preparing for pregnancy. Methods: The initial strategy included a literature review, interviews, and construction of a conceptual framework. The preliminary items were evaluated twice for content validity by experts, and modified two preliminary investigations. Participants in the 2 main investigations and the confirmation investigation were tested for reliability and validity of the preliminary scale in women preparing for pregnancy. The data were analyzed for different items exploratory and confirmatory factors. Results: The 5-point Likert scale consisted of 6 factors and 27 items. The 6-factors included 'hazardous substance factor,' 'medical management factor,' 'rest and sleep factor,' 'stress management factor,' 'information acquisition factor,' and 'resource preparation factor.' Goodness of fit of the final research model was very appropriate and based on the following measures: Q=1.98, comparative fit index=.91, Tucker-lewis index=.89, standardized root mean square residual=.07, and root mean square error of approximation=.07. The criterion validity was .64. The reliability coefficient was .92 and the test-retest reliability was .61. Conclusion: The study findings indicate that the scale can be used for the development of nursing interventions to promote preconception health behavior in women preparing for pregnancy.

A Study on Fatigue Design Automation of Plug- and Ring-type Gas-welded Joints of STS301L Taking Welded Residual Stress into Account (용접잔류응력을 고려한 STS301L 플러그 및 링 용접부의 피로설계 자동화에 관한 연구)

  • Baek, Seung-Yeb;Yun, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1137-1143
    • /
    • 2010
  • This paper presents a fatigue design method for plug- and ring-type gas-welded joints, which takes into account the effects of welding residual stress. To develop this method, we simulated the gas-welding process by performing nonlinear finite element analysis (FEA) To validate the FEA results, numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. To evaluate the fatigue strength of plug- and ring-type gas-welded joints influenced by welding residual stresses, the use of stress amplitude $(\sigma_a)_R$, which includes the welding residual stress in gas welds, is proposed $(\sigma_a)_R$ on the basis of a modified Goodman equation that includes the residual stress effects. Using the stress amplitude $(\sigma_a)_R$ at the hot spot point of gas weld, the relations obtained as the fatigue test results for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged to obtain the $(\sigma_a)_R-N_f$ relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using $(\sigma_a)_R$.