Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.1.009

Measurement of the mixed mode fracture strength of green sandstone using three-point bending specimens  

Li, Yifan (Department of Mechanical Engineering, University of Bristol)
Dong, Shiming (College of Architecture and Environment, Sichuan University)
Pavier, Martyn J. (Department of Mechanical Engineering, University of Bristol)
Publication Information
Geomechanics and Engineering / v.20, no.1, 2020 , pp. 9-18 More about this Journal
Abstract
Three-point bending specimens have been used to investigate the mixed mode fracture of green sandstone. Dimensionless stress intensity factors and T-stresses were calculated first by using the finite element method for various crack lengths, crack angles and span to length ratios. It is shown that three-point bending specimens can provide the whole range of mode mixities from pure mode I to pure mode II, provided suitable values are chosen for the crack angle and span to length ratio. The fracture test results were also used to compare with predictions of different criteria. These comparisons show that modified criteria including the influence of the T-stress agree better with experiment than the conventional criteria but that no one criterion matches perfectly the test results.
Keywords
sandstone; fracture; T-stress; three-point bending; different criteria;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Hua, W., Dong, S., Pan, X. and Wang, Q. (2017), "Mixed mode fracture analysis of CCBD specimens based on the extended maximum tangential strain criterion", Fatigue Fract. Eng. Mater. Struct., 40(12), 2118-2127. http://doi.org/10.1111/ffe.12638.   DOI
2 Kumar, C.N.S., Krishna, P. and Kumar, D.R. (2017), "Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete", Adv. Concrete Constr., 5(6), 613-624. https://doi.org/10.12989/acc.2017.5.6.613.   DOI
3 Li, Y., Dong, S., Li, K. and Hua, W. (2018), "Numerical simulation and experimental study of three-point bending specimen's I/II mixed mode fracture", J. Exp. Mech., 33(4), 557-566. https://doi.org/10.7520/1001-4888-17-040.
4 Maruvanchery, V. and Kim, E. (2019), "Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng., 17(1), 57-67. https://doi.org/10.12989/gae.2019.17.1.057   DOI
5 Midhun, M.S., Rao, T.D.G. and Srikrishna, T.C. (2018), "Mechanical and fracture properties of glass fiber reinforced geopolymer concrete", Adv. Concrete Constr., 6(1), 29-45. https://doi.org/10.12989/acc.2018.6.1.029.   DOI
6 Mirsayar, M.M. (2015), "Mixed mode fracture analysis using extended maximum tangential strain criterion", Mater. Des., 86, 941-947. http://doi.org/10.1016/j.matdes.2015.07.135.   DOI
7 Mirsayar, M.M., Berto, F., Aliha, M.R.M. and Park, P. (2016), "Strain-based criteria for mixed-mode fracture of polycrystalline graphite", Eng. Fract. Mech., 156, 114-123. https://doi.org/10.1016/j.engfracmech.2016.02.011.   DOI
8 Mirsayar, M.M., Razmi, A., Aliha, M.R.M. and Berto, F. (2018), "EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials", Eng. Fract. Mech., 190, 186-197. https://doi.org/10.1016/j.engfracmech.2017.12.014.   DOI
9 Ouchterlony, F. (1988), "Suggested methods for determining the fracture toughness of rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 71-96.
10 Mousavi, S.S., Aliha, M.R.M. and Imani, D.M. (2020), "On the use of edge cracked short bend beam specimen for PMMA fracture toughness testing under mixed-mode I/II", Polym. Test., 81, 106199. https://doi.org/10.1016/j.polymertesting.2019.106199.   DOI
11 Ouchterlony, F. (1990), "Fracture toughness testing of rock with core based specimens", Eng. Fract. Mech., 35(1-3), 351-366. http://doi.org/10.1016/0013-7944(90)90214-2.   DOI
12 Shaker, S., Aliha, M.M. andKeymanesh, M. (2019), "Aging effect on combined mode fracture resistance of bitumen", Fatigue Fract. Eng. Mater. Struct., 42(7), 1609-1621. https://doi.org/10.1111/ffe.13003.   DOI
13 Pour, P.J.H., Aliha, M.R.M. and Keymanesh, M.R. (2018), "Evaluating mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions", Eng. Fract. Mech., 190, 245-258. https://doi.org/10.1016/j.engfracmech.2017.11.007.   DOI
14 Razavi, S.M.J., Aliha, M.R.M. and Berto, F. (2018), "Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens", Theor. Appl. Fract. Mech., 97, 419-425. https://doi.org/10.1016/j.tafmec.2017.07.004.   DOI
15 Richard, H.A. and Benitz, K. (1983), "A loading device for the creation of mixed mode in fracture mechanics", Int. J. Fract., 22(2), R55-R58. http://dx.doi.org/10.1007/BF00942726.   DOI
16 Rizov, V. (2013), "Mixed-mode I/II fracture study of polymer composites using Single Edge Notched Bend specimens", Comput. Mater. Sci., 77, 1-6. http://doi.org/10.1016/j.commatsci.2013.04.021.   DOI
17 Schmidt, R.A. (1980), "A microcrack model and its significance to hydraulic fracturing and fracture toughness testing", Proceedings of 21st US symposium on Rock Mechanics, Rolla, Missouri, U.S.A., May.
18 Sih, G.C. (1973), "Some basic problems in fracture mechanics and new concepts", Eng. Fract. Mech., 5(2), 365-377. http://doi.org/10.1016/0013-7944(73)90027-1.   DOI
19 Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. http://dx.doi.org/10.1007/BF00035493.   DOI
20 Singh, R.N. and Sun, G.X. (1989), Relationships Between Fracture Toughness, Hardness Indices and Mechanical Properties of Rocks, Mining Department Magazine, XLI, 49-62.
21 Aliha, M.R.M., Ayatollahi, M.R., Smith, D.J. and Pavier, M.J. (2010), "Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading", Eng. Fract. Mech., 77(11), 2200-2212. http://doi.org/10.1016/j.engfracmech.2010.03.009.   DOI
22 Akbardoost, J. and Ayatollahi, M.R. (2014), "Experimental analysis of mixed mode crack propagation in brittle rocks: The effect of non-singular terms", Eng. Fract. Mech., 129, 77-89. http://doi.org/10.1016/j.engfracmech.2014.05.016.   DOI
23 Aliha, M.R.M. and Ayatollahi, M.R. (2011), "Mixed mode I/II brittle fracture evaluation of marble using SCB specimen", Procedia Eng., 10, 311-318. http://doi.org/10.1016/j.proeng.2011.04.054.   DOI
24 Aliha, M.R.M. and Bahmani, A. (2017), "Rock fracture toughness study under mixed mode I/III loading", Rock Mech. Rock Eng., 50(7), 1739-1751. https://doi.org/10.1007/s00603-017-1201-7.   DOI
25 Aliha, M.R.M., Bahmani, A. and Akhondi, S. (2015a), "Numerical analysis of a new mixed mode I/III fracture test specimen", Eng. Fract. Mech., 134, 95-110. https://doi.org/10.1016/j.engfracmech.2014.12.010.   DOI
26 Smith, D.J., Ayatollahi, M.R. and Pavier, M.J. (2001), "The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading", Fatigue Fract. Eng. Mater. Struct., 24(2), 137-150. http://doi.org/10.1046/j.1460-2695.2001.00377.x.   DOI
27 Wei, M.D., Dai, F., Xu, N.W., Liu, Y. and Zhao, T. (2017), "Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion", Eng. Fract. Mech., 186, 21-38. http://doi.org/10.1016/j.engfracmech.2017.09.026   DOI
28 Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", J. Appl. Mech., 24, 109-114. https://doi.org/10.1115/1.3640470.   DOI
29 Yukio, U., Kazuo, I., Tetsuya, Y. and Mitsuru, A. (1983), "Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads", Eng. Fract. Mech., 18(6), 1131-1158. http://doi.org/10.1016/0013-7944(83)90007-3.   DOI
30 Aliha, M.R.M., Bagherifard, S., Akhondi, Sh., Mousavi, S.S., Mousavi, A. and Parsania, H. (2018), "Fracture and microstructural study of bovine bone under mixed mode I/II loading", Procedia Struct. Integrit., 13, 1488-1493. http://doi.org/10.1016/j.prostr.2018.12.306.   DOI
31 Aliha, M.R.M., Bahmani, A. and Akhondi, S. (2015b), "Determination of mode III fracture toughness for different materials using a new designed test configuration", Mater. Des., 86, 863-871. https://doi.org/10.1016/j.matdes.2015.08.033.   DOI
32 Aliha, M.R.M., Hosseinpour, G.R. and Ayatollahi, M.R. (2013), "Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials", Rock Mech. Rock Eng., 46(5), 1023-1034. http://doi.org/10.1007/s00603-012-0325-z.   DOI
33 Aliha, M.R.M., Shaker, S. and Keymanesh, M.R. (2019), "Low temperature fracture toughness study for bitumen under mixed mode I+ II loading condition", Eng. Fract. Mech., 206, 297-309. http://doi.org/10.1016/j.engfracmech.2018.11.037.   DOI
34 Aliha, M.R.M., Sistaninia, M., Smith, D.J., Pavier, M.J. and Ayatollahi, M.R. (2012), "Geometry effects and statistical analysis of mode I fracture in guiting limestone", Int. J. Rock Mech. Min. Sci., 51, 128-135. https://doi.org/10.1016/j.ijrmms.2012.01.017.   DOI
35 Ayatollahi, M.R. and Akbardoost, J. (2012), "Size effects on fracture toughness of quasi-brittle materials-A new approach", Eng. Fract. Mech., 92, 89-100. https://doi.org/10.1016/j.engfracmech.2012.06.005.   DOI
36 Ayatollahi, M.R. and Akbardoost, J. (2013), "Size effects in mode II brittle fracture of rocks", Eng. Fract. Mech., 112, 165-180. https://doi.org/10.1016/j.engfracmech.2013.10.011.   DOI
37 Ayatollahi, M.R. and Sistaninia, M. (2011), "Mode ІІ fracture study of rocks using Brazilian disk specimens", Int. J. Rock Mech. Min. Sci., 48(5), 819-826. https://doi.org/10.1016/j.ijrmms.2011.04.017.   DOI
38 Ayatollahi, M.R. and Aliha, M.R.M. (2005), "Cracked Brazilian disc specimen subjected to mode II deformation", Eng. Fract. Mech., 72(4), 493-503. http://dx.doi.org/10.1016/j.engfracmech.2004.05.002.   DOI
39 Ayatollahi, M.R. and Aliha, M.R.M. (2008), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech., 75(16), 4631-4641. http://doi.org/10.1016/j.engfracmech.2008.06.018.   DOI
40 Ayatollahi, M.R. and Sedighiani, K. (2012), "Mode I fracture initiation in limestone by strain energy density criterion", Theor. Appl. Fract. Mech., 57(1), 14-18. http://doi.org/10.1016/j.tafmec.2011.12.003.   DOI
41 Ayatollahi, M.R. and Zakeri, M. (2017), "An improved definition for mode I and mode II crack problems", Eng. Fract. Mech., 175, 235-246. http://doi.org/10.1016/j.engfracmech.2017.01.027.   DOI
42 Ayatollahi, M.R., Berto, F., Campagnolo, A., Gallo, P. and Tang, K. (2017), "Review of local strain energy density theory for the fracture assessment of V-notches under mixed mode loading", Eng. Solid Mech., 5(2), 113-132. http://doi.org/10.5267/j.esm.2017.3.001.
43 Ayatollahi, M.R., Moghaddam, M.R. and Berto, F. (2015), "A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials", Theor. Appl. Fract. Mech., 79, 70-76. http://doi.org/10.1016/j.tafmec.2015.09.004.   DOI
44 Ayatollahi, M.R., Moghaddam, M.R., Razavi, S.M.J. and Berto, F. (2016), "Geometry effects on fracture trajectory of PMMA samples under pure mode-I loading", Eng. Fract. Mech., 163, 449-461. http://doi.org/10.1016/j.engfracmech.2016.05.014.   DOI
45 Fowell, R.J., Hudson, J.A., Xu, C., Chen, J. and Zhao, X. (1995), "Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 7(32), 57-64. http://dx.doi.org/10.1016/0148-9062(94)00015-U.
46 Ayatollahi, M.R., Pavier, M.J. and Smith, D.J. (2002), "Mode I cracks subjected to large T-stresses", Int. J. Fract., 117(2), 159-174. https://doi.org/10.1023/A:1020973802643.   DOI
47 Campagnolo, A. and Berto, F. (2017), "Some recent criteria for brittle fracture assessment under mode II loading", Eng. Solid Mech., 5(1), 31-38. http://doi.org/10.5267/j.esm.2016.10.002.   DOI
48 Chang, K.J. (1981), "On the maximum strain criterion-a new approach to the angled crack problem", Eng. Fract. Mech., 14(1), 107-124. https://doi.org/10.1016/0013-7944(81)90021-7.   DOI
49 Chao, Y.J., Liu, S. and Broviak, B.J. (2001), "Brittle fracture: variation of fracture toughness with constraint and crack curving under mode I conditions", Exp. Mech., 41(3), 232-241. http://doi.org/10.1007/BF02323139.   DOI
50 Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 85(4), 519-525. http://dx.doi.org/10.1115/1.3656897.   DOI
51 Guo, H., Aziz, N.I. and Schmidt, L.C. (1993), "Rock fracture-toughness determination by the Brazilian test", Eng. Geol., 33(3), 177-188. http://doi.org/10.1016/0013-7952(93)90056-I.   DOI
52 Hibbitt, Karlsson & Sorensen, Inc. (2017), Abaqus 6.14 Manual, Version 6.14, Hibbitt, Karlsson & Sorensen, Inc.