• Title/Summary/Keyword: Modified Modulus of Elasticity

Search Result 43, Processing Time 0.027 seconds

A Study on te Water Diffusion of Polymer-Modified Mortars in Drying Process (건조과정에 있어서 폴리머 시멘트 모르터의 수분확산에 관한 연구)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.135-143
    • /
    • 1996
  • Diffusion of water in hardened cement concrete and mortar influences on the dry shrinkage. creep. modulus of' elasticity, etc. In general, water loss through drying process in polymer-modified concrete and mortar is small compared with that of unmodified concrete and mortar due to the films formed by polymer as cement modifieder. The purpose of this study is to investigate the diffusion process of water in the polymer-modified mortars. The polymer-modified mortars using three polymer dispersions and epoxy resin are prepared with various polymer-cement ratios, and water diffusion coefficient of polymer-modified mortars according to inside water content is calculated. From the test results, the water diffusion coefficient of polymer modified mortars i s smaller than that of unmodified mortars and decreases with increasing polymer cement ratio.

Freezing and Thawing Resistance of Latex Modified Concrete with Latex Content (라텍스 혼입에 따른 LMC의 동결융해 저항특성평가)

  • 이주형;정원경;김동호;이봉학;원치문;이정호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.497-502
    • /
    • 2000
  • This study was performed to change the latex content for properties of freezing-thawing resistance. When styrene-butadiene latex is added to portland cement, aggregate and water, a concrete with the color, consistency and workability of ordinary conventional concrete results, but with 20% to 35% less water. When cured, the concrete consists of hydrated cement and aggregate interconnected by a film of latex particles. In general, increasing the amount of latex will produce concrete with increased tensile and flexural strength and lower modulus of elasticity. Air entrainment has been used in conventional concrete for the past 50 years to impart freeze-thaw resistance. Latex modified concrete does not need additional air entrainment for freeze-thaw resistance provided adequate cure occurs.

  • PDF

Effects of Functional Properties of Soy Protein Isolate and Qualities of Soybean Curd upon Proteolytic Hydrolysis (효소처리가 대두단백질의 기능특성과 두부의 품질에 미치는 영향)

  • Han, Jin-Suk;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.294-299
    • /
    • 1992
  • This study was to examine the effect of functional properties of soy protein isolate(SPI) and qualities of soybean curd upon proteolytic hydrolysis. SPI was hydrolyzed using proteolytic enzyme, bromelain. The protein content of SPI by microkjeldahl method was 84% and the degree of hydrolysis in modified soy protein isolate(MSPI) was 2.7%. The solubility of MSPI was higher than that of control at various pH tested and proteolytic hydrolysis was increased emulsion formation and foam expansion while decreased emulsion stability, foam stability and calcium precipitation. Modified soybean curdI, standard soybean milk: Modified soybean milk=3:1, was soft and springy soybean curd when the texture properties of soybean curd were tested by texture profile analysis using Instron and sensory evaluation. The rheological model of soybean curds was investigated by stress relaxation test. The analysis of relaxation curve revealed that the rheological behavior of soybean curds could be expressed by 7-element generalized Maxwell model. The equilibrium modulus and modulus of elasticity decreased as the ratio of modified soybean milk was increased.

  • PDF

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation

  • Heydari, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.171-182
    • /
    • 2018
  • For the first time, nonlocal damped vibration and buckling analyses of arbitrary tapered bidirectional functionally graded solid circular nano-plate (BDFGSCNP) are presented by employing modified spectral Ritz method. The energy method based on Love-Kirchhoff plate theory assumptions is applied to derive neutral equilibrium equation. The Eringen's nonlocal continuum theory is taken into account to capture small-scale effects. The characteristic equations and corresponding first mode shapes are calculated by using a novel modified basis in spectral Ritz method. The modified basis is in terms of orthogonal shifted Chebyshev polynomials of the first kind to avoid employing adhesive functions in the spectral Ritz method. The fast convergence and compatibility with various conditions are advantages of the modified spectral Ritz method. A more accurate multivariable function is used to model two-directional variations of elasticity modulus and mass density. The effects of nanoscale, in-plane pre-load, distributed dashpot, arbitrary tapering, pinned and clamped boundary conditions on natural frequencies and buckling loads are investigated. Observing an excellent agreement between results of current work and outcomes of previously published works in literature, indicates the results' accuracy in current work.

COMPARISON OF MECHANICAL PROPERTIES OF VARIOUS POST AND CORE MATERIALS

  • Ahn Seung-Geun;Sorensen John A.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.288-299
    • /
    • 2003
  • Statement of problem: Many kinds of post and core systems are in the market, but there are no clear selection criteria for them. Purpose: The purpose of this study was to compare the flexural strength and modulus of elasticity of core materials, and measure the bending strength of post systems made of a variety of materials. Material and Methods: The flexural strength and elastic modulus of thirteen kinds core buildup materials were measured on beams of specimens of $2.0{\times}2.0{\times}24{\pm}0.1mm$. Ten specimens per group were fabricated and loaded on an lnstron testing machine at a crosshead speed of 0.25mm/min. A test span of 20 mm was used. The failure loads were recorded and flexural strength calculated with the measured dimensions. The elastic modulus was calculated from the slopes of the linear portions of the stress-stram graphs. Also nine kinds commercially available prefabricated posts made of various materials with similar nominal diameters, approximately 1.25mm, were loaded in a three-point bend test until plastic deformation or failure occurred. Ten posts per group were tested and the obtained data were anaylzed with analysis of variance and compared with the Tukey multiple comparison tests. Results: Clearfil Photo Core and Luxacore had flexural strengths approaching amalgam, but its modulus of elasticity was only about 15% of that of amalgam. The strengths of the glass ionomer and resin modified glass ionomer were very low. The heat pressed glass ceramic core had a high elastic modulus but a relatively low flexural strength approximating that of the lower strength composite resin core materials. The stainless steel, zirconia and carbon fiber post exhibited high bending strengths. The glass fiber posts displayed strengths that were approximately half of the higher strength posts. Conclusion: When moderate amounts of coronal tooth structure are to be replaced by a post and core on an anterior tooth, a prefabricated post and high strength, high elastic modulus core may be suitable. CLINICAL IMPLICATIONS In this study several newly introduced post and core systems demonstrated satisfactory physical properties. However when the higher stress situation exists with only a minimal ferrule extension remaining a cast post and core or zirconia post and pressed core are desirable.

Mechanical and Durability Characteristics of Latex-Modified Concrete Using Ultra Rapid Hardening Cement (초속경 시멘트를 이용한 라텍스 개질 콘크리트의 역학성능과 내구성능)

  • Park, Sang-Hyun;Jung, Si-young;Kim, Hyun-yu;Choi, Kyoung-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.153-160
    • /
    • 2019
  • The purpose of this study was to investigate the mechanical and durability characteristics of latex-modified concrete using ultra rapid hardening cement : four types of mechanical tests including compressive strength, modulus of elasticity, flexural strength and bond strength were performed; and seven types of durability tests including resistance of concrete to chloride ion penetration, freeze-thaw resistance, scaling resistance, coefficient of thermal expansion, cracking tendency, abrasion resistance and drying shrinkage were performed. Required material performance of each test was determined in accordance with the Korea specification for repair of concrete and pavement repairing materials. The test results satisfied the required material performances, and presented a good mechanical and durability characteristics. In particularly, the materials showed early development of compressive strength, flexural strength and bond strength at 3 and 4 hours after curing. SEM photos were also taken to investigate the micro structures of the materials after chloride ion penetration test.

Effect of Structural Geometry of Jointed Concrete Pavement on Backcalculation using AREA Method (줄눈콘크리트 포장의 구조적 형상이 AREA법을 이용한 역해석에 미치는 영향)

  • Yoo, Tae-Seok;Sim, Jong-Sung
    • International Journal of Highway Engineering
    • /
    • v.9 no.1 s.31
    • /
    • pp.39-46
    • /
    • 2007
  • Different backcalculation results for the same material properties are caused by different structural geometry. In this paper, based on real simulation results for typical pavement systems using 3-dimensional FE models, modified AREA graphs are proposed to graphically backcalculate modulus of elasticity of slab and subgrade based on center deflection and AREA. In modified graph for single infinity slab models, deflection and AREA are increased in deeper depth to bedrock. But, effects of depth to bedrock more than 4.0 meters on backcalculation results are negligible. And, center deflection and AREA generated from multifinite slab models are larger than those of single infinity slab models with same depth to bedrock.

  • PDF

Basic Properties of Polymer Cement Composites with Polymer Dispersions and Cement for Crack Repair (폴리머 디스퍼전과 시멘트로 만든 균열보수용 폴리머 시멘트 복합체의 기초적 성질)

  • Young-Kug Jo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.97-104
    • /
    • 2023
  • The aim of this study was to produce polymer cement composites (PCCs) composed of polymer dispersion and cement as crack repair materials for RC structures, and to investigate their fundamental properties. The test mixtures for the study were based on EVA and SAE polymer dispersions, and the water-cement ratio was determined while varying the polymer-cement ratio(P/C) in four different levels (20%, 60%, 80%, and 100%) to achieve the desired viscosity of PCCs considering their fillability as crack repair materials. Additionally, silica fume was incorporated into P/C 80% and 100% specimens to enhance their stiffness. The basic properties of PCCs as crack repair materials, such as viscosity, flowability, fillability, tensile strength, elongation, and modulus of elasticity, were examined. The results showed that P/C depending on the type of polymer significantly affected the viscosity and flowability, and appropriate w/c ratios were needed to achieve the desired viscosity for the mixture design with consideration of fillability as crack repair materials for RC structures. All designed mixtures in this study exhibited excellent fillability. The tensile strength and elongation of PCCs satisfied the KS regulation for cement- polymer modified waterproofing coatings. The incorporation of silica fume improved the tensile strength and modulus of elasticity of PCCs. Depending on the type of polymer, mixtures using SAE showed better fundamental properties as crack repair materials for RC structures compared to those using EVA. In conclusion, SAE-based P/C 80% or 100% with the addition of up to 30% silica fume can be recommended as suitable mixtures for crack repair of RC structures.

Preparation and Characterization of Biodegradable Poly(butylene succinate)(PBS) Foams

  • Lim, Sang-Kyun;Jang, Suk-Goo;Lee, Seok-In;Lee, Kwang-Hee;Chin, In-Joo
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.218-223
    • /
    • 2008
  • In order to obtain crosslinked poly(butylene succinate) (PBS) foams with a closed-cell structure, a commercial-grade PBS was first modified in the melt using two different branching agents to increase the melt viscosity. The rheological properties of the branched and crosslinked PBS were examined by varying the amount of the branching agents. The complex viscosity of the crosslinked PBS increased with increasing amount of the branching agent. However, it decreased with increasing frequency. When 2 phr of the branching agent was added to PBS, the storage modulus (G') was higher than the loss modulus (G") throughout the entire frequency range, showing that the addition of a branching agent increases the melt viscosity and elasticity of PBS effectively. Closed-cell PBS foams were prepared by mixing the chemical blowing agent with the crosslinked PBS. The effect of the foaming conditions such as temperature and time, and the amount of the crosslinking agent on the structure of the expanded PBS foams were also investigated.

Mix design of CSG method (CSG 공법적용을 위한 배합설계기법)

  • Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.293-301
    • /
    • 2005
  • The CSG(Cemented Sand and Gravel) method is construction technique using as raw materials earth and gravel generated from a local construction site, mixing them with cement and rolling with vibration rollers. Recently, The use of this method for cofferdam and large dam is gradually increasing in Japan. The purpose of an CSG mix design is to develop project specific properties to meet the structure design requirements. But uniform mix design of CSG method has not yet been established. The experience of practitioners from the geotechnical and concrete disciplines has given rise to two genernal approaches to mix design for CSG. This paper reports the concept of how to set the mix design according to modified Proctor compaction test process and the test results on properties such as compaction, compressive strength and modulus of elasticity that obtained by unconfined compression test.

  • PDF