• Title/Summary/Keyword: Modified Image Method

Search Result 660, Processing Time 0.026 seconds

Modified Particle Filtering for Unstable Handheld Camera-Based Object Tracking

  • Lee, Seungwon;Hayes, Monson H.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.78-87
    • /
    • 2012
  • In this paper, we address the tracking problem caused by camera motion and rolling shutter effects associated with CMOS sensors in consumer handheld cameras, such as mobile cameras, digital cameras, and digital camcorders. A modified particle filtering method is proposed for simultaneously tracking objects and compensating for the effects of camera motion. The proposed method uses an elastic registration algorithm (ER) that considers the global affine motion as well as the brightness and contrast between images, assuming that camera motion results in an affine transform of the image between two successive frames. By assuming that the camera motion is modeled globally by an affine transform, only the global affine model instead of the local model was considered. Only the brightness parameter was used in intensity variation. The contrast parameters used in the original ER algorithm were ignored because the change in illumination is small enough between temporally adjacent frames. The proposed particle filtering consists of the following four steps: (i) prediction step, (ii) compensating prediction state error based on camera motion estimation, (iii) update step and (iv) re-sampling step. A larger number of particles are needed when camera motion generates a prediction state error of an object at the prediction step. The proposed method robustly tracks the object of interest by compensating for the prediction state error using the affine motion model estimated from ER. Experimental results show that the proposed method outperforms the conventional particle filter, and can track moving objects robustly in consumer handheld imaging devices.

  • PDF

Object Recognition Using Hausdorff Distance and Image Matching Algorithm (Hausdorff Distance와 이미지정합 알고리듬을 이용한 물체인식)

  • Kim, Dong-Gi;Lee, Wan-Jae;Gang, Lee-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.841-849
    • /
    • 2001
  • The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.

A Modified Expansion-Contraction Method for Mobile Object Tracking in Video Surveillance: Indoor Environment

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.298-306
    • /
    • 2013
  • Recent years have witnessed a growing interest in the fields of video surveillance and mobile object tracking. This paper proposes a mobile object tracking algorithm. First, several parameters such as object window, object area, and expansion-contraction (E-C) parameter are defined. Then, a modified E-C algorithm for multiple-object tracking is presented. The proposed algorithm tracks moving objects by expansion and contraction of the object window. In addition, it includes methods for updating the background image and avoiding occlusion of the target image. The validity of the proposed algorithm is verified experimentally. For example, the first scenario traces the path of two people walking in opposite directions in a hallway, whereas the second one is conducted to track three people in a group of four walkers.

Change Detection in Bitemporal Remote Sensing Images by using Feature Fusion and Fuzzy C-Means

  • Wang, Xin;Huang, Jing;Chu, Yanli;Shi, Aiye;Xu, Lizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1714-1729
    • /
    • 2018
  • Change detection of remote sensing images is a profound challenge in the field of remote sensing image analysis. This paper proposes a novel change detection method for bitemporal remote sensing images based on feature fusion and fuzzy c-means (FCM). Different from the state-of-the-art methods that mainly utilize a single image feature for difference image construction, the proposed method investigates the fusion of multiple image features for the task. The subsequent problem is regarded as the difference image classification problem, where a modified fuzzy c-means approach is proposed to analyze the difference image. The proposed method has been validated on real bitemporal remote sensing data sets. Experimental results confirmed the effectiveness of the proposed method.

Automatic Moving Target Detection, Acquisition and Tracking using Disturbance Map in Complex Image Sequences (복잡한 영상신호에서 디스터번스 맵을 이용한 움직이는 물체 자동감지, 획득 및 추적)

  • Cho, Jae-Soo;Chu, Gil-Whoan
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.199-202
    • /
    • 2003
  • An effective method is proposed for detecting, acquisition and tracking of a moving object using a disturbance map method in complex image sequences. A significant moving object is detected and tracked within the field of view by computing a modified disturbance map method between an Input image and a temporal average image. This method is very efficient in the serveillance application of digital CCTV and an automatic tracking camera. Experimental results using a real image sequence confirmed that the proposed method can effectively detect and track a significant moving object in complex image sequences.

  • PDF

Edge detection for noisy image (잡음 영상에서의 에지 검출)

  • Koo, Yun Mo;Kim, Young Ro
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • In this paper, we propose a method of edge detection for noisy image. The proposed method uses a progressive filter for noise reduction and a Sobel operator for edge detection. The progressive filter combines a median filter and a modified rational filter. The proposed method for noise reduction adjusts rational filter direction according to an edge in the image which is obtained by median filtering. Our method effectively attenuates the noise while preserving the image details. Edge detection is performed by a Sobel operator. This operator can be implemented by integer operation and is therefore relatively fast. Our proposed method not only preserves edge, but also reduces noise in uniform region. Thus, edge detection is well performed. Our proposed method could improve results using further developed Sobel operator. Experimental results show that our proposed method has better edge detection with correct positions than those by existing median and rational filtering methods for noisy image.

Exact Histogram Specification Considering the Just Noticeable Difference

  • Jung, Seung-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Exact histogram specification (EHS) transforms the histogram of an input image into the specified histogram. In the conventional EHS techniques, the pixels are first sorted according to their graylevels, and the pixels that have the same graylevel are further differentiated according to the local average of the pixel values and the edge strength. The strictly ordered pixels are then mapped to the desired histogram. However, since the conventional sorting method is inherently dependent on the initial graylevel-based sorting, the contrast enhancement capability of the conventional EHS algorithms is restricted. We propose a modified EHS algorithm considering the just noticeable difference. In the proposed algorithm, the edge pixels are pre-processed such that the output edge pixels obtained by the modified EHS can result in the local contrast enhancement. Moreover, we introduce a new sorting method for the pixels that have the same graylevel. Experimental results show that the proposed algorithm provides better image enhancement performance compared to the conventional EHS algorithms.

Efficient Modifications of Cubic Convolution Interpolation Based on Even-Odd Decomposition (짝수 홀수 분해법에 기초한 CCI의 효율적인 변형)

  • Cho, Hyun-Ji;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.690-695
    • /
    • 2014
  • This paper presents a modified CCI image interpolation method based on the even-odd decomposition (EOD). The CCI method is a well-known technique to interpolate images. Although the method provides better image quality than the linear interpolation, its complexity still is a problem. To remedy the problem, this paper introduces analysis on the EOD decomposition of CCI and then proposes a reduced CCI interpolation in terms of complexity, providing better image quality in terms of PSNR. To evaluate the proposed method, we conduct experiments and complexity comparison. The results indicate that our method do not only outperforms the existing methods by up to 43% in terms of MSE but also requires low-complexity with 37% less computing time than the CCI method.

Image Classification Using Modified Anisotropic Diffusion Restoration (수정 이방성 분산 복원을 이용한 영상 분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.479-490
    • /
    • 2003
  • This study proposed a modified anisotropic diffusion restoration for image classification. The anisotropic diffusion restoration uses a probabilistic model based on Markov random field, which represents geographical connectedness existing in many remotely sensed images, and restores them through an iterative diffusion processing. In every iteration, the bonding-strength coefficient associated with the spatial connectedness is adaptively estimated as a function of brightness gradient. The gradient function involves a constant called "temperature", which determines the amount of discontinuity and is continuously decreased in the iterations. In this study, the proposed method has been extensively evaluated using simulated images that were generated from various patterns. These patterns represent the types of natural and artificial land-use. The simulated images were restored by the modified anisotropic diffusion technique, and then classified by a multistage hierarchical clustering classification. The classification results were compared to them of the non-restored simulation images. The restoration with an appropriate temperature considerably reduces error in classification, especially for noisy images. This study made experiments on the satellite images remotely sensed on the Korean peninsula. The experimental results show that the proposed approach is also very effective on image classification in remote sensing.

Iterative Image Restoration Algorithm Using Power Spectral Density (전력밀도 스펙트럼을 이용한 반복적 영상 신호 복원 알고리즘)

  • 임영석;이문호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.713-718
    • /
    • 1987
  • In this paper, an iterative restoration algorithm from power spectral density with 1 bit sign information of real part of two dimensional Fourier transform of image corrupted by additive white Gaussian noise is proposed. This method is a modified version of image reconstruction algorithm from power spectral density. From the results of computer simulation with original 32 gray level imgae of 64x64 pixels, we can find that restorated image after each iteration converge to original image very fast, and SNR gain be at least 8[dB] after 10th iteration for corrupted image with additive white Gaussian noise.

  • PDF