• 제목/요약/키워드: Modified Fouling Index (MFI)

검색결과 7건 처리시간 0.017초

오염물질의 특성이 막오염 지수에 미치는 영향 (Effect of Foulant Characteristics on Membrane Fouling Index)

  • 박찬혁;김하나;홍승관
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.775-780
    • /
    • 2005
  • This study was performed to investigate the effect of foulant characteristics on Membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI). A linear relationship was found relating the fouling index (both SDI and MFI) on particle concentration, but fouling index values were nonlinearly (exponentially) with increasing organic concentration. When organic matter was the primary cause of fouling, the MFI was not accurately predicted due to internal fouling such as pore adsorption. The fouling index was determined mainly by particle characteristics when both particle and organic coexisted in the feed water. This observation was attributed to lessening of organic pore adsorption by particle cake layer formed on the membrane surface. Bench-scale actual fouling experiments demonstrated that permeate flux declines much faster with feed water containing particles than organic matters although fouling potential predicted by SDI values were identical, indicating that the accurate prediction of fouling potential requires the development of fouling index reflecting different foulant characteristics.

Happel Cell 모델을 이용한 막오염 지수 예측 (Prediction of Membrane Fouling Index by Using Happel Cell Model)

  • 박찬혁;김하나;홍승관
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.632-638
    • /
    • 2005
  • Membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI) is an important parameter in design of the integrated RO/NF membrane processes for drinking water treatment. In this study, the effect of particle, membrane and feed water characteristics on membrane fouling index were investigated systematically. Higher fouling index values were observed when filtering suspensions with smaller particle size and higher feed particle concentration. Larger membrane resistance due to smaller pore size resulted in an increased membrane fouling index. The variations of feed water hardness and TDS concentrations did not show any impact on fouling index, suggesting that there were no significant colloidal interactions among particles and thus the porosity of particle cake layer accumulated on the membrane surface could be assumed to be 0.36 according to random packing density. Based on the experimental observations, fundamental membrane fouling index model was developed using Happel Cell. The effect of primary model parameters including particle size ($a_p$), particle concentration ($C_o$), membrane resistance ($R_m$), were accurately assessed without any fitting parameters, and the prediction of membrane fouling index such as MFI exhibited very good agreement with the experimental results.

막오염 지수를 이용한 유기물에 의한 막오염 평가 (Evaluation of Organic Fouling Potential by Membrane Fouling Index)

  • 김하나;박찬혁;홍승관
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.140-144
    • /
    • 2006
  • This study was performed to investigate the effect of organic characteristics and feed water solution chemistry on membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI). Specifically, Aldrich humic acids (AHA) and Suwannee river humic acids (SHA) were used in SDI/MFI experiments. Higher SDI values were observed with increasing organic concentration. AHA with larger molecular weight (MW) and SUVA (${\approx}UV_{254}/TOC$) resulted in higher SDI values, compared to SHA. The feed solution chemistry (i.e, pH, ionic strength, and hardness) also affects SDI values to some degree. In particular, SDI increased with increasing hardness ($Ca^{2+}$) concentration for AHA. Unlike SDI, the MFI developed on the basis of particle cake filtration theory, was not accurately assessed due to internal fouling by organics such as pore adsorption and subsequent pore blocking.

Use of laminar flow water storage tank (LFWS) to mitigate the membrane fouling for reuse of wastewater from wafer processes

  • Sun, Darren Delai;Wu, You
    • Membrane and Water Treatment
    • /
    • 제3권4호
    • /
    • pp.221-230
    • /
    • 2012
  • This study employed the modified fouling index (MFI) to determine the performance of a two-step recycling system - a membrane filtration integrated laminar flow water storage (LFWS) tank followed by an ion exchange process to reclaim ultrapure water (UPW) from the wastewater generated from semiconductor wafer backgrinding and sawing processes. The first step consisted of the utilization of either ultrafiltration (UF) or nanofiltration (NF) membranes to remove solids in the wastewater where the second step consisted of an ion exchanger to further purify the filtrate. The system was able to produce high purity water in a continuous operating mode. However, higher recycling cost could be incurred due to membrane fouling. The feed wastewater used for this study contained high concentration of fine particles with low organic and ionic contents, hence membrane fouling was mainly attributed to particulate deposition and cake formation. Based on the MFI results, a LFWS tank that was equipped with a turbulence reducer with a pair of auto-valves was developed and found effective in minimizing fouling by discharging concentrated wastewater prior to any membrane filtration. By comparing flux behaviors of the improved system with the conventional system, the former maintained a high flux than the latter at the end of the experiment.

Impacts of sludge retention time on membrane fouling in thermophilic MBR

  • Ince, Mahir;Topaloglu, Alikemal
    • Membrane and Water Treatment
    • /
    • 제9권4호
    • /
    • pp.245-253
    • /
    • 2018
  • The aim of this study is to investigate the membrane fouling in a thermophilic membrane bioreactor (TMBR) operated different sludge retention times (SRTs). For this purpose, TMBR was operated at four different SRTs (10, 30, 60 and 100 days). Specific cake resistance (${\alpha}$), cake resistance, gel resistance, total resistance, MFI (modified fouling index) and FDR (flux decrease ratio) were calculated for all SRTs. It was observed that flux in the membrane increases with rising SRT although the sludge concentrations in the TMBR increased. The steady state flux was found to be 31.78; 34.70; 39.60 and 43.70 LMH ($Liter/m^2/h$) for the SRTs of 10, 30, 60 and 100 days respectively. The concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) decreased with increasing SRT. The membrane fouling rate was higher at shorter SRT and the highest fouling rate appeared at an SRT of 10 d. Both the sludge cake layer and gel layer had contribution to the fouling resistance, but the gel layer resistance value was dominant in all SRTs.

내오염성 나노여과막의 제조 및 특성 (Preparation and Characteristics of Fouling Resistant Nanofiltration Membranes)

  • 김노원
    • 멤브레인
    • /
    • 제17권1호
    • /
    • pp.44-53
    • /
    • 2007
  • 본 연구에서는 나노여과막과 역삼투막의 표면 개질을 통하여 유량의 향상 및 내오염성을 향상시키는 제조 방법을 개발하였다. 실란 화합물이 코팅된 복합막의 표면 성질이 막 오염 지수 MFI 값에 미치는 영향을 살펴보았다. 상용화된 역삼투막(RE1812-LP)과 나노여과막(ESNA 4040-LF) 복합막을 기저막으로 사용하여 실란 커플링제의 농도를 달리하여 개질 복합막을 제조하였다. 실란 커플링제 aminopropylmethoxydiethoxysilane은 아민 관능기와 3개의 알콕시 관능기를 가지며 아민 관능기가 가지는 친수성 특성이 개질막의 투과 수량 및 내오염성에 미치는 영향을 조사하였다. 개질막의 실란층의 안정적인 형성을 확인하기 위하여 FE-SEM, 접촉각 측정 및 제타 전위값 등의 표면 특성 변화를 살펴보았다. 특히 개질된 나노여과막의 2가 이온 수용액을 공급수로 할 경우 염제거율에 대한 영향 없이 내오염성이 현저히 증가함을 확인하였다.

하수처리수 재이용을 위한 RO 공정의 타당성 및 막오염 평가 (Evaluation of RO Process Feasibility and Membrane Fouling for Wastewater Reuse)

  • 홍기웅;이상엽;김창우;부찬희;박명균;안호철;홍승관
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.289-296
    • /
    • 2010
  • The purpose of this study is to evaluate various pre-treatment methods and proprieties of water quality for wastewater reuse using reverse osmosis (RO) processes. Secondary effluents were sampled from wastewater treatment plants and lab scale pre-treatments and RO filtration test were conducted systematically. Specifically, different types of pre-treatments, such as coagulation, microfiltration and ultrafiltration, were employed to evaluate the removal efficiency of particle and organic matters which may affect the membrane fouling rate. RO process was later added to eliminate trace amounts of remaining organic matters and salt from the raw water for wastewater reclamation. The permeate through the RO process satisfied water quality regulations for industrial water uses. The experimental results showed that the initial fouling tendency differed not only by the feed water properties but also by the membrane characteristics. Membrane fouling was greater for the membranes with large surface roughness, regardless of the hydrophobicity and zeta potentials. Thus both careful consideration of pre-treatment options and proper selection of RO membrane are of paramount importance for an efficient operation of wastewater treatment.