• Title/Summary/Keyword: Modified DTC

Search Result 13, Processing Time 0.023 seconds

Comparative Study of Torque Ripple in Induction Motor Driven by Modified ST-DTC (Modified ST-DTC를 이용한 유도전동기의 토크리플 비교)

  • Choi, Yuhyon;Han, Jungho;Lee, Youngil;Song, Joongho
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.122-123
    • /
    • 2014
  • 기존의 ST-DTC는 하나의 유효 전압 벡터를 인가하여 그 결과 높은 토크 리플이 생기는 단점을 가지고 있다. 이러한 단점을 해결하기 위해 Modified ST-DTC 기법이 제안되었다. 따라서 본 논문은 Modified ST-DTC 기법 중 유효 전압 벡터와 제로 벡터를 인가하는 방법과 인접한 두 유효 전압 벡터를 합성한 중간 전압 벡터를 인가하는 방법을 비교한다.

  • PDF

Robust 2 D.O.F. Controller for the Precesses with dead-time (시간지연을 갖는 프로세서의 견실한 2자유도 제어기)

  • 최주용;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.319-319
    • /
    • 2000
  • In this paper, A dead-time compensator (DTC) for the processes with long dead-time is proposed. The processes which consist of dead-time, time-constant, gain are estimated by the linear least squares method in the frequency domain. A Smith predictor(SP) modified by including a filter becomes a two degree of freedom DTC. So the proposed DTC can yield the desirable setpoint and load disturbance responses separately. PI controller is used for the primary controller and the filter is tuned to be robust. Simulation examples demonstrate the properties of the proposed DTC.

  • PDF

Modeling and Experimental Validation of 5-level Hybrid H-bridge Multilevel Inverter Fed DTC-IM Drive

  • Islam, Md. Didarul;Reza, C.M.F.S.;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.574-585
    • /
    • 2015
  • This paper aims to improve the performance of conventional direct torque control (DTC) drives proposed by Takahashi by extending the idea for 5-level inverter. Hybrid cascaded H-bridge topology is used to achieve inverter voltage vector composed of 5-level of voltage. Although DTC is very popular for its simplicity but it suffers from some disadvantages like- high torque ripple and uncontrollable switching frequency. To compensate these shortcomings conventional DTC strategy is modified for five levels voltage source inverter (VSI). Multilevel hysteresis controller for both flux and torque is used. Optimal voltage vector selection from precise lookup table utilizing 12 sector, 9 torque level and 4 flux level is proposed to improve DTC performance. These voltage references are produced utilizing a hybrid cascaded H-bridge multilevel inverter, where inverter each phase can be realized using multiple dc source. Fuel cells, car batteries or ultra-capacitor are normally the choice of required dc source. Simulation results shows that the DTC drive performance is considerably improved in terms of lower torque and flux ripple and less THD. These have been experimentally evaluated and compared with the basic DTC developed by Takahashi.

The Modified Direct Torque Control System for Five-Phase Induction Motor Drives (5상 유도전동기 구동을 위한 수정된 직접 토크제어 시스템)

  • Kim, Min-Huei;Kim, Nom-Hun;Baik, Won-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.138-147
    • /
    • 2009
  • In this paper, improved direct torque control(DTC) system for five-phase squirrel-cage induction motor(IM) is proposed. Due to the additional degrees of freedom, five-phase 1M drives present unique characteristics. Also five-phase motor drives possess many other advantages compared with the traditional three-phase motor drive system, such as reducing an amplitude of torque pulsation and increasing the reliability. The DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter. However, five-phase motor has structural drawback of 3rd space-harmonics current component, it is necessary to controlled 3rd harmonic current. So to control 3rd harmonic current and enhance dynamic characteristics of five-phase squirrel-cage IM drive, modified DTC method should be demanded. The characteristics and dynamic performance of traditional five-phase DTC are analyzed and new DTC for five-phase IM is presented. A more precise flux and torque control algorithm for the drives can be suggested and explained For presenting the superior performance of the proposed direct torque control, experimental results are presented using a 32-[bit] fixed point TMS320F2812 digital signal processor with 2.2[kW] induction motor.

Modified Direct Torque Control using Algorithm Control of Stator Flux Estimation and Space Vector Modulation Based on Fuzzy Logic Control for Achieving High Performance from Induction Motors

  • Rashag, Hassan Farhan;Koh, S.P.;Abdalla, Ahmed N.;Tan, Nadia M.L.;Chong, K.H.
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.369-380
    • /
    • 2013
  • Direct torque control based on space vector modulation (SVM-DTC) protects the DTC transient merits. Furthermore, it creates better quality steady-state performance in a wide speed range. The modified method of DTC using SVM improves the electrical magnitudes of asynchronous machines, such as minimizing the stator current distortions, the stator flux with electromagnetic torque without ripple, the fast response of the rotor speed, and the constant switching frequency. In this paper, the proposed method is based on two new control strategies for direct torque control with space vector modulation. First, fuzzy logic control is used instead of the PI torque and a PI flux controller to minimizing the torque error and to achieve a constant switching frequency. The voltages in the direct and quadratic reference frame ($V_d$, $V_q$) are achieved by fuzzy logic control. In this scheme, the switching capability of the inverter is fully utilized, which improves the system performance. Second, the close loop of stator flux estimation based on the voltage model and a low pass filter is used to counteract the drawbacks in the open loop of the stator flux such as the problems saturation and dc drift. The response of this new control strategy is compared with DTC-SVM. The experimental and simulation results demonstrate that the proposed control topology outperforms the conventional DTC-SVM in terms of system robustness and eliminating the bad outcome of dc-offset.

Modified Direct Torque Control System of Five Phase Induction Motor

  • Kim, Nam-Hun;Kim, Min-Huei
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.266-271
    • /
    • 2009
  • In this paper, improved direct torque control(DTC) of five-phase induction motor(IM) is proposed. Due to the additional degrees of freedom, five-phase IM drives present unique characteristics. One of them is the ability of enhancing the torque producing capability of the motor. Also five-phase motor drives possess many others advantage compared with the traditional three-phase motor drives. Such as, reducing the amplitude and increasing of frequency of torque pulsation, reducing amplitude of current per phase without increasing the voltage per phase and increasing the reliability. The direct torque control method is advantageous when it is applied to the five-phase IM. Because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors by the three-phase inverter. The 32 space voltage vectors are divided into three groups according to their magnitudes. The characteristics and dynamic performance of traditional five-phase DTC are analyzed and new DTC for five-phase IM is proposed. Therefore, a more precise flux and torque control algorithm for the five-phase IM drives can be suggested and explained. For presenting the superior performance of the pro-posed direct torque control, experimental results is presented using a 32 bit fixed point TMS320F2812 digital signal processor

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.

Flying Capacitor DTC Drive with Reductions in Common Mode Voltage and Stator Overvoltage

  • Rahmati, Abdolreza;Arasteh, Mohammad;Farhangi, Shahrokh;Abrishamifar, Adib
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.512-519
    • /
    • 2011
  • This paper gives a detailed analysis of the direct torque control (DTC) strategy in a five-level drive and proposes a 24-sector switching table. The known problems in low-voltage drives such as bearings currents and an overvoltage phenomenon which leads to premature failure are reviewed and the occurrence of these problems in medium voltage drives has been investigated. Then a solutions to these problems is presented and the switching table to deal with these problems is modified. Simulation and experimental results on a 3kVA prototype confirm the proposed solution. In implementing the above strategy a TMS320F2812 is used.

The design method of dead-time compensator for processes with multiplicative uncertainty and long dead time (승산 불확실성을 가지는 시간 지연 시스템의 제어기 설계 방법)

  • 김인희;마진석;최병태;김우현;구본호;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.237-237
    • /
    • 2000
  • In this paper, The modified dead-time compensator for plants with an integrator and long dead time is proposed. The design procedure takes account of the closed-loop performance and robustness. The tuning of the controller can be done using some information about the plant and its uncertainties. The proposed controller is compared to others recently presented in the literature. Some simulation results verify good closed-performance and robustness of the proposed DTC.

Dorsal Track Control (DTC): A Modified Surgical Technique for Atraumatic Handling of the Distal Esophagus in Esophagojejunostomy

  • Lehwald-Tywuschik, Nadja;Steinfurth, Fabian;Kropil, Feride;Krieg, Andreas;Sarikaya, Hulya;Knoefel, Wolfram Trudo;Kruger, Martin;Benhidjeb, Tahar;Beshay, Morris;Esch, Jan Schulte am
    • Journal of Gastric Cancer
    • /
    • v.19 no.4
    • /
    • pp.473-483
    • /
    • 2019
  • Surgical therapy for adenocarcinoma of the esophagogastric junction II requires distal esophagectomy, in which a transhiatal management of the lower esophagus is critical. The 'dorsal track control' (DTC) maneuver presented here facilitates the atraumatic handling of the distal esophagus, in preparation for a circular-stapled esophagojejunostomy. It is based on a ventral semicircular incision in the distal esophagus, with an intact dorsal wall for traction control of the esophagus. The maneuver facilitates the proper placement of the purse-string suture, up to its tying (around the anvil), thus minimizing the manipulation of the remaining esophagus. Furthermore, the dorsally-exposed inner wall surface of the ventrally-opened esophagus serves as a guiding chute that eases anvil insertion into the esophageal lumen. We performed this novel technique in 21 cases, enabling a safe anastomosis up to 10 cm proximal to the Z-line. No anastomotic insufficiency was observed. The DTC technique improves high transhiatal esophagojejunostomy.