• 제목/요약/키워드: Modified AP Algorithm

검색결과 8건 처리시간 0.022초

Convergence Analysis of Noise Robust Modified AP(affine projection) Algorithm

  • Kim, Hyun-Tae;Park, Jang-Sik
    • Journal of information and communication convergence engineering
    • /
    • 제8권1호
    • /
    • pp.23-28
    • /
    • 2010
  • According to increasing projection order, the AP algorithm bas noise amplification problem in large background noise. This phenomenon degrades the performances of the AP algorithm. In this paper, we analyze convergence characteristic of the AP algorithm and then suggest a noise robust modified AP algorithm for reducing this problem. The proposed algorithm normalizes the update equation to reduce noise amplification of AP algorithm, by adding the multiplication of error power and projection order to auto-covariance matrix of input signal. By computer simulation, we show the improved performance than conventional AP algorithm.

선형예측기와 개선된 AP(affine projection) 알고리즘을 결합한 반향 및 잡음 제거 (Echo and Noise Reduction Using Modifed AP Algorithm Combined with Linear Predictor)

  • 김현태;도진규;박장식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.839-842
    • /
    • 2010
  • 본 논문에서는 핸즈프리 전화통신를 위한 반향 및 잡음제거구조를 제안하다. 제안하는 구조는 주변 잡음이 많을 때 반향 경로 추정 성능이 우수한 개선된 AP 알고리즘을 적응 알고리즘으로 사용하고 비동시 통화구간에서 잔여반향신호를 선형예측하여 백색화시킨다. 컴퓨터 시뮬레이션을 통해 제안하는 방법이 AIC(acoustic interference cancellation) 측면에서 우수함을 보인다.

  • PDF

INNOVATION ALGORITHM IN ARMA PROCESS

  • Sreenivasan, M.;Sumathi, K.
    • Journal of applied mathematics & informatics
    • /
    • 제5권2호
    • /
    • pp.373-382
    • /
    • 1998
  • Most of the works in Time Series Analysis are based on the Auto Regressive Integrated Moving Average (ARIMA) models presented by Box and Jeckins(1976). If the data exhibits no ap-parent deviation from stationarity and if it has rapidly decreasing autocorrelation function then a suitable ARIMA(p,q) model is fit to the given data. Selection of the orders of p and q is one of the crucial steps in Time Series Analysis. Most of the methods to determine p and q are based on the autocorrelation function and partial autocor-relation function as suggested by Box and Jenkins (1976). many new techniques have emerged in the literature and it is found that most of them are over very little use in determining the orders of p and q when both of them are non-zero. The Durbin-Levinson algorithm and Innovation algorithm (Brockwell and Davis 1987) are used as recur-sive methods for computing best linear predictors in an ARMA(p,q)model. These algorithms are modified to yield an effective method for ARMA model identification so that the values of order p and q can be determined from them. The new method is developed and its validity and usefulness is illustrated by many theoretical examples. This method can also be applied to an real world data.

강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계 (Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology)

  • 김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

A Study on a Healthcare System Using Smart Clothes

  • Lim, Chae Young;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.372-377
    • /
    • 2014
  • Being able to monitor the heart will allow the diagnosis of heart diseases for patients during daily activities, and the detection of burden on the heart during strenuous exercise. Furthermore, with the help of U-health technology, immediate medical action can be taken, in the case of abnormal symptoms of the heart in daily life. Therefore, it appears to be necessary to develop the corresponding technology to monitor the condition of the heart daily. In this study, a novel wearable smart system was proposed, to monitor the activity of the heart in daily life, and to further evaluate the rhythm of arrhythmia. The wearable system includes three modified bipolar conductive fiber electrodes in the chest part, which can resolve the reduction problem of the magnitude of the signal, by magnifying the signal and removing the noise, to obtain high affinity and validity for medical-type usage (<0.903%). The biological signal acquisition and data lines, and the signal processing engine and communication consist of a conductive ink, and the pic18 and ANT protocol nRF24AP2, respectively. The proposed algorithm was able to detect a strong ECG, signal and r-point passing over the noise. The confidence intervals were 96 %, which could satisfy the requirement to detect arrhythmia under the unconstrained conditions.

YOLOv5 based Anomaly Detection for Subway Safety Management Using Dilated Convolution

  • Nusrat Jahan Tahira;Ju-Ryong Park;Seung-Jin Lim;Jang-Sik Park
    • 한국산업융합학회 논문집
    • /
    • 제26권2_1호
    • /
    • pp.217-223
    • /
    • 2023
  • With the rapid advancement of technologies, need for different research fields where this technology can be used is also increasing. One of the most researched topic in computer vision is object detection, which has widely been implemented in various fields which include healthcare, video surveillance and education. The main goal of object detection is to identify and categorize all the objects in a target environment. Specifically, methods of object detection consist of a variety of significant techniq ues, such as image processing and patterns recognition. Anomaly detection is a part of object detection, anomalies can be found various scenarios for example crowded places such as subway stations. An abnormal event can be assumed as a variation from the conventional scene. Since the abnormal event does not occur frequently, the distribution of normal and abnormal events is thoroughly imbalanced. In terms of public safety, abnormal events should be avoided and therefore immediate action need to be taken. When abnormal events occur in certain places, real time detection is required to prevent and protect the safety of the people. To solve the above problems, we propose a modified YOLOv5 object detection algorithm by implementing dilated convolutional layers which achieved 97% mAP50 compared to other five different models of YOLOv5. In addition to this, we also created a simple mobile application to avail the abnormal event detection on mobile phones.

An improved time-domain approach for the spectra-compatible seismic motion generation considering intrinsic non-stationary features

  • Feng Cheng;Jianbo Li;Zhixin Ding;Gao Lin
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.968-980
    • /
    • 2023
  • The dynamic structural responses are sensitive to the time-frequency content of seismic waves, and seismic input motions in time-history analysis are usually required to be compatible with design response spectra according to nuclear codes. In order to generate spectra-compatible input motions while maintaining the intrinsic non-stationarity of seismic waves, an improved time-domain approach is proposed in this paper. To maintain the nonstationary characteristics of the given seismic waves, a new time-frequency envelope function is constructed using the Hilbert amplitude spectrum. Based on the intrinsic mode functions (IMFs) obtained from given seismic waves through variational mode decomposition, a new corrective time history is constructed to locally modify the given seismic waves. The proposed corrective time history and time-frequency envelope function are unique for each earthquake records as they are extracted from the given seismic waves. In addition, a dimension reduction iterative technique is presented herein to simultaneously superimpose corrective time histories of all the damping ratios at a specific frequency in the time domain according to optimal weights, which are found by the genetic algorithm (GA). Examples are presented to show the capability of the proposed approach in generating spectra-compatible time histories, especially in maintaining the nonstationary characteristics of seismic records. And numerical results reveal that the modified time histories generated by the proposed method can obtain similar dynamic behaviors of AP1000 nuclear power plant with the natural seismic records. Thus, the proposed method can be efficiently used in the design practices.

회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지 (Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box)

  • 추엔 팜;장리;염선;신휴성
    • 터널과지하공간
    • /
    • 제31권5호
    • /
    • pp.374-384
    • /
    • 2021
  • 본 논문에서는 암석시료의 CT 촬영 이미지상의 균열을 자동으로 탐지하는 새로운 인공지능 딥러닝 기법을 제안한다. 본 제안 기법은 2단계 딥러닝 객체인식 알고르즘인 Faster R-CNN을 기반으로 회전 가능한 경계박스(bounding box) 개념을 도입하여 알고리즘을 개조하였다. 회전 경계박스의 도입은 관심 균열 영역 밖의 배경의 불균질성 및 균열의 크기와 형태에 영향을 받는 딥러닝 객체인식기법 상의 고유한 어려움을 극복하기 위한 핵심 역할을 한다. 본 회전형 경계박스의 사용은 일반적으로 사용되는 영상 수평축과 평행한 경계박스 사용의 경우와 비교하여 긴 형태의 균열 형상 특성에 매우 잘 부합된다. 즉, 좋지않은 영향을 끼치는 경계박스 내 균열 이외 배경영역의 비율을 최소화 시킬 수 있다. 이외에도, 회전 경계박스의 추가적인 이점은 인식된 균열의 방향에 따라 회전하여 추론되는 경계박스를 통해 균열의 방향과 길이에 대한 정보를 직접적으로 얻을 수 있다. 본 제안기법의 적용성을 검증하기 위하여, 이미지상에서 매우 불균질한 화강암 시료에 인공적으로 균열을 발생시킨 다수의 암석시료 영상을 딥러닝 학습에 사용하고 추론 성능 실험을 진행하였다. 그 외에도, 동일 조건에서 사암과 셰일 암석 시료에도 적용하여 검증하였다. 결론적으로, 제안된 기법을 통해 균열 객체 인식의 평균 추론정확도(mAP)값이 0.89 정도 수준의 우수한 추론 성능을 보였으며, 기존 기법에 비해 추론된 경계박스 내 균열과 배경 영역의 비율 측면에서 배경의 비율이 획기적으로 최소화되는 유리한 추론 검증 결과를 보였다.