• Title/Summary/Keyword: Models, experimental

Search Result 5,430, Processing Time 0.033 seconds

Gesture Communications Between Different Avatar Models Using FBML (FBML을 이용한 서로 다른 아바타 모델간의 제스처 통신)

  • ;;Yoshiki Arakawa
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.57-60
    • /
    • 2003
  • In order to overcome the limitation based on different avatar models, in this paper, we propose gesture communications between different avatar models using FBML (Facial Body Markup Language). The experimental results demonstrate a possibility that the proposed method could be used as an efficient means to overcome the problem.

  • PDF

Determination of structural performance of 3D steel pipe rack suspended scaffolding systems

  • Arslan, Guray;Sevim, Baris;Bekiroglu, Serkan
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.671-681
    • /
    • 2017
  • This study investigates the structural performance of 3D steel pipe rack suspended scaffolding systems. For the purpose, a standard full scale 3D steel pipe rack suspended scaffolding system considering two frames, two plane trusses, purlins and wooden floor is constructed in the laboratory. A developed load transmission system was placed in these experimental systems to distribute single loads to the center of a specific area in a step-by-step manner using a load jack. After each load increment, the displacements are measured by means of linear variable differential transducers placed in several critical points of the system. The tests are repeated for five different system conditions to determine the structural performance. The means of system conditions is the numbers of the tie bars which are used to connect plane trusses under level. Finite elements models of the 3D steel pipe rack suspended scaffolding systems considering different systems conditions are constituted using SAP2000 software to support the experimental tests and to use the models in future studies. Each of models including load transmission platform is analyzed under a single loading and the displacements are obtained. In addition, to calibrate the numerical models some uncertain parameters such as elasticity modulus of wooden floor and connection rigidity of purlins to plane trusses are assessed experimentally. The results of this work demonstrate that when increasing numbers of tie bars the displacement values are decreased. Also the results obtained from developed numerical models have harmony with those of experimental. In addition, the scaffolding system with two tie bars at the beginning and at the end of the plane truss has the optimum structural performance compared the results obtained for other scaffolding system conditions.

An Experimental Study on the Estimation of the Plate Tearing Damage (판의 찢김 손상 추정을 위한 실험 연구)

  • Yang, Park-Dal-Chi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.64-69
    • /
    • 2003
  • This paper describes a study on the tearing damage of the ship's bottom plating during a grounding. It has been known widely that difference scaling laws are applied for bodies undergoing simultaneously plastic flow and crack propagation in the deformation of the plate tearing. Especially, the basic scaling law is not followed for the fracture. In this study plate cutting experiments for the geometrically similar models have been performed in order to verify the problem. From the experimental results, it has been observed that the cutting forces and energy for the larger models are significantly lower than those of the smaller models the damage become large. A simplified analytical method for the estimation of tearing is proposed based on the experiments and it has been observed that the results of the present formula are correlated very well with the experiments

  • PDF

Combined effect of CFRP-TSR confinement on circular reinforced concrete columns

  • Berradia, Mohammed;Kassoul, Amar
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2017
  • The use of external carbon-fiber-reinforced polymer (CFRP) wraps is one of the most effective techniques existing for the confinement of the circular concrete columns. Currently, several researches have been made to develop models for predicting the behavior of this type of confinement. The disadvantage of the most models, is to not take into account the contribution of the transverse steel reinforcements (TSR) effect, However, very limited models have been recently developed that considers this combined effect and gives less accurate results. This paper presents the development of a new model for the axial behavior of circular concrete columns confined by combining external CFRP warps-and-internal TSR (hoops or spirals) based on the existing experimental data. The comparison between the proposed model and the experimental results showed good agreement comparing to the several existing models. Moreover, the expressions of estimating the ultimate strength and the corresponding strain are simple and precise, which make it easy to use in the design applications.

Evaluation of Turbulent Models on the Mixing Flow Structure of $45^{\circ}$ Impinging Jet by Two Round Jets (두 원형분류에 의한 $45^{\circ}$ 충돌분류의 흔합유동구조에 대한 난류모델 평가)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.34-39
    • /
    • 2009
  • In this paper, the CFD analysis using various turbulent models has been performed to evaluate which type of turbulent models can predict well the mixing flow structure of $45^{\circ}$ impinging round jet. This CFD analysis has been carried out through the commercial Fluent software. As a result, any of turbulent models cannot predict the experimental results definitely all over the flow range. However, as compared with the experimental results, the turbulent model of realizable(RLZ) k-$\varepsilon$ only predicts well in the limited range between X/$X_0=1.1$ and X/$X_0=2.0$.

  • PDF

A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions

  • Yilmaz, Fuat;Gundogdu, Mehmet Yasar
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.197-211
    • /
    • 2008
  • The purpose of this study is mainly directed towards present of viewpoints on critical and commentary analysis on blood rheology, blood viscosity models, and physiological flow conditions. Understanding these basics is fundamental to meet the need for a sufficient and reliable CFD model of blood. Most of the used viscosity models on this manner have determined from parameter fitting on experimental viscosity data. Availability of experimental data from literature to define viscosity models of CFD analysis should be accurately chosen and treated in order to avoid any errors. Several basic gaps that limit the CFD model results are identified and given opportunities for future research.

Linearized Rheological Models of Fruits (과실(果實)의 리올러지 선형화(線型化) 모델(模型))

  • Park, J.M.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.2
    • /
    • pp.138-147
    • /
    • 1994
  • The stress relaxation and creep characteristics of fruits have usually been fit to an exponential expression based on a generalized Maxwell model and Burger's model. It is known that two to three terms in the expansion of those models are necessary to obtain a satisfactory fit to the rheological characteristics of fruits. Since four to six constants appear in the models, it is very difficult to determine their physical meaning according to the experimental conditions and levels. Therefore in order to ease the comparison of data, this study was conducted to develop the linearized rheological model of the fruit from the previous studies of stress relaxation and creep characteristics of fruits. Stress relaxation and creep characteristics were able to normalize and presented in the linear form of $t/S(t)=K_1+k_2t$ and $t/C(t)={K_1}^{\prime}+{K_2}^{\prime}t$, respectively. It was possible to compare the effects of experimental conditions and levels much easier from the linearized models developed in this study than from the generalized Maxwell model and Burger's model.

  • PDF

An Experimental Study on the Estimation of the Plate Tearing Damage (판의 찢김 손상 추정을 위한 실험 연구)

  • 양박달치
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • This paper describes a study on the tearing damage of a ship's bottom plating, during a grounding. It is widely known that different scaling laws are applied for bodies undergoing simultaneous plastic flow and crack propagation in the deformation of plate tearing. Specifically, the basic scaling law is not followed for the fracture. In this study, in order to verify the problem, plate cutting experiments for geometrically similar models have been performed. From the experimental results, it has been observed that the cutting forces and energy for the larger models are significantly lower than those of the smaller models. A simplified analytical method for the estimation of tearing is proposed, based on the experiments. It has been observed that the results of the present formula are highly correlated with the experiments.

Development of bioinformatics and multi-omics analyses in organoids

  • Doyeon Ha;JungHo Kong;Donghyo Kim;Kwanghwan Lee;Juhun Lee;Minhyuk Park;Hyunsoo Ahn;Youngchul Oh;Sanguk Kim
    • BMB Reports
    • /
    • v.56 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • Pre-clinical models are critical in gaining mechanistic and biological insights into disease progression. Recently, patient-derived organoid models have been developed to facilitate our understanding of disease development and to improve the discovery of therapeutic options by faithfully recapitulating in vivo tissues or organs. As technological developments of organoid models are rapidly growing, computational methods are gaining attention in organoid researchers to improve the ability to systematically analyze experimental results. In this review, we summarize the recent advances in organoid models to recapitulate human diseases and computational advancements to analyze experimental results from organoids.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.