• 제목/요약/키워드: Models, experimental

검색결과 5,430건 처리시간 0.031초

2단분할법 측정 실험계획에 의한 게이지 정밀도 산정 (Calculation of Gauge Precisions by Measurement Experimental Design for Split Split Plots)

  • 최성운
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 추계학술대회
    • /
    • pp.649-657
    • /
    • 2009
  • The paper presents the measurement split split-plot models for saving the time and cost. The split split-plot designs developed are efficiently used to estimating the gauge R&R(Reproducibility & Repeatability) when the completely randomized design of all factors(such as high pressure and temperature) is expensive and time consuming. The models studied include three split split-plots considering the type of experimental units.

  • PDF

Experimental analysis on FEM definition of backfill-rectangular tank-fluid system

  • Cakir, Tufan;Livaoglu, Ramazan
    • Geomechanics and Engineering
    • /
    • 제5권2호
    • /
    • pp.165-185
    • /
    • 2013
  • In the present study, the numerical and experimental investigations were performed on the backfill- exterior wall-fluid interaction systems in case of empty and full tanks. For this, firstly, the non-linear three dimensional (3D) finite element models were developed considering both backfill-wall and fluid-wall interactions, and modal analyses for these systems were carried out in order to acquire modal frequencies and mode shapes by means of ANSYS finite element structural analysis program. Secondly, a series of field tests were fulfilled to define their modal characteristics and to compare the results from proposed approximation in the selected structures. Finally, comparing the theoretical predictions from the finite element models to results from experimental measurements, a close agreement was found between theory and experiment. Thus, it can be easily stated that experimental verifications provide strong support for the finite element models and the proposed procedures themselves are the meritorious approximations to the real problem, and this makes the models appealing for use in further investigations.

A practical neuro-fuzzy model for estimating modulus of elasticity of concrete

  • Bedirhanoglu, Idris
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.249-265
    • /
    • 2014
  • The mechanical characteristics of materials are very essential in structural analysis for the accuracy of structural calculations. The estimation modulus of elasticity of concrete ($E_c$), one of the most important mechanical characteristics, is a very complex area in terms of analytical models. Many attempts have been made to model the modulus of elasticity through the use of experimental data. In this study, the neuro-fuzzy (NF) technique was investigated in estimating modulus of elasticity of concrete and a new simple NF model by implementing a different NF system approach was proposed. A large experimental database was used during the development stage. Then, NF model results were compared with various experimental data and results from several models available in related research literature. Several statistic measuring parameters were used to evaluate the performance of the NF model comparing to other models. Consequently, it has been observed that NF technique can be successfully used in estimating modulus of elasticity of concrete. It was also discovered that NF model results correlated strongly with experimental data and indicated more reliable outcomes in comparison to the other models.

Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP

  • Saridemir, Mustafa
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.489-498
    • /
    • 2016
  • In this paper, the flexural strength ($f_{fs}$) and splitting tensile strength ($f_{sts}$) of concrete containing different proportions of fly ash have been modeled by using gene expression programming (GEP). Two GEP models called GEP-I and GEP-II are constituted to predict the $f_{fs}$ and $f_{sts}$ values, respectively. In these models, the age of specimen, cement, water, sand, aggregate, superplasticizer and fly ash are used as independent input parameters. GEP-I model is constructed by 292 experimental data and trisected into 170, 86 and 36 data for training, testing and validating sets, respectively. Similarly, GEP-II model is constructed by 278 experimental data and trisected into 142, 70 and 66 data for training, testing and validating sets, respectively. The experimental data used in the validating set of these models are independent from the training and testing sets. The results of the statistical parameters obtained from the models indicate that the proposed empirical models have good prediction and generalization capability.

분산성분모형에서 요인의 배치구조가 모형선택법에 미치는 영향에 대한 실험연구 (Effect of Experimental Layout on Model Selection under Variance Components Models: A Simulation Study)

  • 이용희
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.1035-1046
    • /
    • 2015
  • 분산성분모형은 다양한 임의 요인들이 반응변수에 미치는 영향을 선형식의 형태로 나타내는 매우 유용하고 널리 사용되는 통계적 모형이다. 분산성분모형은 요인의 배치나 관측 자료의 구조에 따라 크게 교차배치와 지분배치로 나누어진다. 본 논문은 분산성분모형에서 요인의 배치구조와 분산성분의 크기에 따라 모형선택법의 경험적인 성질이 다르게 나타나는 현상을 체계적인 모의실험을 통하여 제시하고자 한다. 이원배치 분산성분모형에서 정보기준에 근거한 모형선택법, 즉 BIC 또는 AIC를 사용하는 경우 요인의 배치구조와 분산성분의 크기에 따라 모형선택법의 경험적인 성질이 다르게 나타나는 현상을 소규모 모의실험을 통하여 보여준다. 모의실험 결과에서 모형선택법의 경험적 성질이 요인의 배치 설계에 따라 다르게 나타난다는 사실을 확인하였으며 특히 요인의 배치구조가 지분 설계구조일때 내포된 요인의 분산성분의 상대적인 크기가 커짐에 따라 자료를 생성하는 모형보다 작은 모형을 선택하는 경향이 있다는 것이 모의실험으로 확인되었다.

Comparison of Two-Equation Model and Reynolds Stress Models with Experimental Data for the Three-Dimensional Turbulent Boundary Layer in a 30 Degree Bend

  • Lee, In-Sub;Ryou, Hong-Sun;Lee, Seong-Hyuk;Chae, Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.93-102
    • /
    • 2000
  • The objective of the present study is to investigate the pressure-strain correlation terms of the Reynolds stress models for the three dimensional turbulent boundary layer in a $30^{\circ}$ bend tunnel. The numerical results obtained by models of Launder, Reece and Rodi (LRR) , Fu and Speziale, Sarkar and Gatski (SSG) for the pressure-strain correlation terms are compared against experimental data and the calculated results from the standard k-${\varepsilon}$ model. The governing equations are discretized by the finite volume method and SIMPLE algorithm is used to calculate the pressure field. The results show that the models of LRR and SSG predict the anisotropy of turbulent structure better than the standard k-${\varepsilon}$ model. Also, the results obtained from the LRR and SSG models are in better agreement with the experimental data than those of the Fu and standard k-${\varepsilon}$ models with regard to turbulent normal stresses. Nevertheless, LRR and SSG models do not effectively predict pressure-strain redistribution terms in the inner layer because the pressure-strain terms are based on the locally homogeneous approximation. Therefore, to give better predictions of the pressure-strain terms, non-local effects should be considered.

  • PDF

TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER

  • Podowski, Michael Z.
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.889-896
    • /
    • 2012
  • Recent progress in the computational fluid dynamics methods of two- and multiphase phase flows has already started opening up new exciting possibilities for using complete multidimensional models to simulate boiling systems. Combining this new theoretical and computational approach with novel experimental methods should dramatically improve both our understanding of the physics of boiling and the predictive capabilities of models at various scale levels. However, for the multidimensional modeling framework to become an effective predictive tool, it must be complemented with accurate mechanistic closure laws of local boiling mechanisms. Boiling heat transfer has been studied quite extensively before. However, it turns out that the prevailing approach to the analysis of experimental data for both pool boiling and forced-convection boiling has been associated with formulating correlations which normally included several adjustable coefficients rather than based on first principle models of the underlying physical phenomena. One reason for this has been the tendency (driven by practical applications and industrial needs) to formulate single expressions which encompass a broad range of conditions and fluids. This, in turn, makes it difficult to identify various specific factors which can be independently modeled for different situations. The objective of this paper is to present a mechanistic modeling concept for both pool boiling and forced-convection boiling. The proposed approach is based on theoretical first-principle concepts, and uses a minimal number of coefficients which require calibration against experimental data. The proposed models have been validated against experimental data for water and parametrically tested. Model predictions are shown for a broad range of conditions.

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.

Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.275-282
    • /
    • 2017
  • The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.

금인레이 와동의 폭경이 응력분포와 변위에 미치는 영향에 관한 3차원 유한요소법적 연구 (A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON STRESS AND DISPLACEMENT RELATED TO ISTHMUS WIDTH OF GOLD INLAY CAVITY)

  • 황호길;임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제19권2호
    • /
    • pp.384-408
    • /
    • 1994
  • The purpose of this study was to evaluate the fracture resistance of tooth restored with gold inlay. A profound understanding of the isthmus width factor, which is one of the several parameters of cavity designs, would facilitate the appropriate cavity preparation in a specific clinical situation. In this study, the cavities for gold inlay were prepared in maxillary left first premolar. A three-dimensional model was designed using I-DEAS program. The model was composed of 2515- nodes and 2172 isoparametric brick elements. In the model isthmus width was varied into 1/4, 1/3 and 1/2 of intercuspal width respectively, and numeric values of the material properties of enamel, dentin and gold was set. Three types of load : concentrated load, divided load and distributed load was 500N. The empty cavities in the model were also examined using divided load and distributed load. The three - dimensional Finite Element Method was used to analysis the displacement and stress distribution. The results were as follows : 1. All of the experimental models which were filled with gold inlay revealed similar direction of displacement to that of the natural tooth model under the same load type. But in the models with empty cavities, as the isthmus width increased, the degree of displacement increased in the case of divided load type. 2. All experimental models which were filled with gold inlay showed stress concentration at load points, but in the models with empty cavities at divided load type, as isthmus width increased, stress was concentrated at the comer of the pulpal floor. 3. In the models with empty cavities at divided load type, tooth fracture was expected regardless of isthmus width, but all experimental models which were filled with gold inlay after cavity preparation were not susceptible to fracture. 4. In all experimental models which were filled with gold inlay after cavity preparation, displacement patterns were similar under both concentrated and divided load types. In the models with empty cavities, a divided load resulted in a bucco-lingual cuspal displacemenat in both sides, but a distributed load resulted in a lingual displacement of the tooth.

  • PDF