• 제목/요약/키워드: Modelling Error

검색결과 278건 처리시간 0.027초

AUML기반의 소프트웨어 컴포넌트들의 협력성을 위한 검증 모텔에 관한 연구 (A Study About Verification Model for Cooperation of Software Components of AUML Base)

  • 한현관;박재복
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권3호
    • /
    • pp.529-538
    • /
    • 2005
  • AUML(Agent Unified Modeling Language)은 에이전트 소프트웨어 시스템의 명세화, 시각화, 생성을 목적으로 하는 언어이다. 본 연구에서는 소프트웨어의 복잡화, 대형화 추세에 자동화 응용 프로그램 생성 시스템들 중의 하나인 Together를 Agent의 BDI에 응용시키고 이를 컴포넌트 시스템의 상호 운영성에 대하여 고찰한다. 상호 운용성은 컴포넌트간의 데이터 교환에 의해 이루어지며 컴포넌트의 타입이 다르더라도 서로 협력할 수 있는 표준 명세서(FIPA:Foundation for Inteligent Physical Agent)를 기반으로 ACL 메시지, 그리고 프로토콜을 사용하며 이를 객체지향 모델링을 통한 메타모델기반 등을 이용하여 구현 시 오류를 최소화하는 방법과 정확성과 일관성에 관하여 연구한다.

  • PDF

SG 정보를 이용한 강인한 물체 추출 알고리즘 (Robust Object Detection Algorithm Using Spatial Gradient Information)

  • 주영훈;김세진
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.422-428
    • /
    • 2008
  • 본 논문에서는 spatial gradient를 이용한 강인한 물체 추출 방법을 제안한다. 제안한 방법은 먼저 복잡한 환경과 다양한 빛의 변화에 의해 나타나는 에러 값 등을 해결하기 위해 기존에 제안된 입력 영상과 기준 영상에서 밝기와 색 성분을 이용하여 최초 배경을 제거한다. 배경을 제거한 다음, 그림자로 인식되어 전경 영역에 추가된 부분을 RGB 칼라 모델과 정규화 된 RGB 칼라 모델을 이용하여 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 갖는 영역을 제거한다. 마지막으로, 배경으로 인식되어 전경으로부터 제거된 부분을 입력 영상의 공간상 정보인 spatial gradient와 HSI 칼라 모델을 이용하여 복구하는 방법을 제안한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 실내 외 환경에서의 실험을 통해 그 응용 가능성을 증명한다.

선형 CCD카메라 영상의 정밀 기하학적 보정 (Precision correction of satellite-based linear pushbroom-type CCD camera images)

  • 신동석;이영란;이흥규
    • 대한원격탐사학회지
    • /
    • 제14권2호
    • /
    • pp.137-148
    • /
    • 1998
  • 본 논문에서 고해상도 위성영상의 정밀 기하학적 보정에 대하여 기술한다. 일반적으로 GCP로부터 영상과 기준 지도 사이의 다하식을 유도하는 polynomial warping 방법인 경우 원하는 정확도를 얻기위해 영상 전체를 골고루 분포된 많은 GCP를 요구하게 된다. 하지만 제안되는 알고리즘은 위성-센서-궤도-지구 간의 기하학적 모델을 바탕으로 2-3개의 GCP만으로도 전체 영상을 매우 정확히 보정할 수 있다. 개발된 알고리즘은 GCP를 순차적으로 사용하여 부정확한 초기 궤도 및 자세 정보를 정밀하게 추정하고 이러한 추정은 Kalman filter를 사용하여 이루어진다. 이 알고리즘은 현재 우리별 3호의 전처리 소프트웨어에 통합되어 구현되어 있으며 앞으로 우리별 3호 영상뿐 아니라 다목적실용위성 영상의 정밀 기하학적 보정에 사용될 예정이다.

A Semi-automated Method to Extract 3D Building Structure

  • Javzandulam, Tsend-Ayush;Kim, Tae-Jung;Kim, Kyung-Ok
    • 대한원격탐사학회지
    • /
    • 제23권3호
    • /
    • pp.211-219
    • /
    • 2007
  • Building extraction is one of the essential issues for 3D city modelling. In recent years, high-resolution satellite imagery has become widely available and it brings new methodology for urban mapping. In this paper, we have developed a semi-automatic algorithm to determine building heights from monoscopic high-resolution satellite data. The algorithm is based on the analysis of the projected shadow and actual shadow of a building. Once two roof comer points are measured manually, the algorithm detects (rectangular) roof boundary automatically. Then it estimates a building height automatically by projecting building shadow onto the image for a given building height, counting overlapping pixels between the projected shadow and actual shadow, and finding the height that maximizes the number of overlapping pixels. Once the height and roof boundary are available, the footprint and a 3D wireframe model of a building can be determined. The proposed algorithm is tested with IKONOS images over Deajeon city and the result is compared with the building height determined by stereo analysis. The accuracy of building height extraction is examined using standard error of estimate.

Uncertainty assessment caused by GCMs selection on hydrologic studies

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.151-151
    • /
    • 2018
  • The present study is aimed to quantifying the uncertainty in the general circulation model (GCM) selection and its impacts on hydrology studies in the basins. For this reason, 13 GCMs was selected among the 26 GCM models of the Fifth Assessment Report (AR5) scenarios. Then, the climate data and hydrologic data with two Representative Concentration Pathways (RCPs) of the best model (INMCM4) and worst model (HadGEM2-AO) were compared to understand the uncertainty associated with GCM models. In order to project the runoff, the Precipitation-Runoff Modelling System (PRMS) was driven to simulate daily river discharge by using daily precipitation, maximum and minimum temperature as inputs of this model. For simulating the discharge, the model has been calibrated and validated for daily data. Root mean square error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were applied as evaluation criteria. Then parameters of the model were applied for the periods 2011-2040, and 2070-2099 to project the future discharge the five large basins of South Korea. Then, uncertainty caused by projected temperature, precipitation and runoff changes were compared in seasonal and annual time scale for two future periods and RCPs compared to the reference period (1976-2005). The findings of this study indicated that more caution will be needed for selecting the GCMs and using the results of the climate change analysis.

  • PDF

Numerical modelling of shelter effect of porous wind fences

  • Janardhan, Prashanth;Narayana, Harish
    • Wind and Structures
    • /
    • 제29권5호
    • /
    • pp.313-321
    • /
    • 2019
  • The wind blowing at high velocity in an open storage yard leads to wind erosion and loss of material. Fence structures can be constructed around the periphery of the storage yard to reduce the erosion. The fence will cause turbulence and recirculation behind it which can be utilized to reduce the wind erosion and loss of material. A properly designed fence system will produce lesser turbulence and longer shelter effect. This paper aims to show the applicability of Support Vector Machine (SVM) to predict the recirculation length. A SVM model was built, trained and tested using the experimental data gathered from the literature. The newly developed model is compared with numerical turbulence model, in particular, modified $k-{\varepsilon}$ model along with the experimental results. From the results, it was observed that the SVM model has a better capability in predicting the recirculation length. The SVM model was able to predict the recirculation length at a lesser time as compared to modified $k-{\varepsilon}$ model. All the results are analyzed in terms of statistical measures, such as root mean square error, correlation coefficient, and scatter index. These examinations demonstrate that SVM has a strong potential as a feasible tool for predicting recirculation length.

Data-Driven Modelling of Damage Prediction of Granite Using Acoustic Emission Parameters in Nuclear Waste Repository

  • Lee, Hang-Lo;Kim, Jin-Seop;Hong, Chang-Ho;Jeong, Ho-Young;Cho, Dong-Keun
    • 방사성폐기물학회지
    • /
    • 제19권1호
    • /
    • pp.75-85
    • /
    • 2021
  • Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

Nonlinear numerical analysis and proposed equation for axial loading capacity of concrete filled steel tube column with initial imperfection

  • Ahmad, Haseeb;Fahad, Muhammad;Aslam, Muhammad
    • Structural Monitoring and Maintenance
    • /
    • 제9권1호
    • /
    • pp.81-105
    • /
    • 2022
  • The use of concrete filled steel tube (CFST) column is widely accepted due to its property of high axial load carrying capacity, more ductility and more resistant to earthquake specially using in bridges and high-rise buildings. The initial imperfection (δ) that produces during casting or fixing causes the reduction in load carrying capacity, this is the reason, experimental capacity is always less then theoretical one. In this research, the effect of δ on load carrying capacity and behavior of concrete filled steel tube (CFST) column have been investigated by numerically simulation of large number of models with different δ and other geometric parameters that include length (L), width (B), steel tube thickness (t), f'c and fy. Finite element analysis software ANSYS v18 is used to develop model of SCFST column to evaluate strength capacity, buckling and failure pattern of member which is applied during experimental study under cyclic axial loading. After validation of results, 42 models with different parameters are evaluated to develop empirical equation predicting axial load carrying capacity for different value of δ. Results indicate that empirical equation shows the 0 to 9% error for finite element analysis Forty-two models in comparison with ANSYS results, respectively. Empirical equation can be used for predicting the axial capacity of early estimating the axial capacity of SCFT column including 𝛿.

Numerical modeling of concrete conveying capacity of screw conveyor based on DEM

  • Yu, Wenda;Zhang, Ke;Li, Dong;Zou, Defang;Zhang, Shiying
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.361-374
    • /
    • 2022
  • On the premise of ensuring that the automatic and quantitative discharging function of concrete conveyors is met, the accuracy of the weight forecast by the mathematical model of the screw conveying volume is improved, and the error of the weight of the concrete parts and the accumulation thickness is reduced. In this paper, the discrete element method (DEM) is used to simulate the macroscopic flow of concrete. Using the concrete discrete element model, the size of the screw conveyor is set, and establish the response model between the influencing factors (process and structure) and the concrete mass flow rate according to the design points of the screw discharging experiment. The nonlinear data fitting method is used to obtain the volumetric efficiency function under the influence of process and structural factors, and the traditional screw conveying volume model is improved. The mass flow rate of concrete predicted by the improved mathematical model of screw conveying volume is consistent with the test results. The model can accurately describe the conveying process of concrete and achieve the purpose of improving the accuracy of forecasting the weight of discharged concrete.