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Abstract

Products are often evaluated on rating scales to measure and quantify their
attributes of interest. In case that one wishes to compare multiple rating datasets
simultaneously, there must be a standardized scale with which one can
discriminate relative differences among corresponding scale means. In this regard,
the concept of Thurstonian modeling applied to various discrimination tests
including the triangular method has been recently being reconsidered. In this paper
we extend previous researches on the triangular method and evaluate the effect of
unequal variances and correlated variables upon the probability of correct response
using Monte-Carlo simulation. We observed that the probability of correct
response depends on dimensionality, variances, and correlation structure of
stimulus sets. But it does not depend on the relative orientation in a
multidimensional space.

1. Introduction

Products and concepts are often evaluated on rating scales to quantify degree of
liking, level of purchase interest, intensity of an attribute, or degree of difference.
Rating scales are constructed in many different ways, but usually involve a
number of options labeled with numbers, words or symbols.

One problem with rating data is that in case of using, in particular, different
rating scales to evaluate several products of one kind, we cannot compare these
data directly unless a standardized scale is provided. This kind of problem is
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prevalent, for instance, in the fields of food sciences where sensory evaluation
methods are frequently required. In this regard, recently, the idea of Thurstonian
modeling applied to various discrimination methods including the triangular
method, the duo—trio method, etc., has been being reconsidered.

Thurstone(1927) formulated a model through a subjective scale on which
sensations can be ordered for stimuli of varying and unknown physical amounts.
An individual is assumed to receive a sensation in response to a stimulus. The
amount of sensation varies for stimuli of the same strength.

The basic idea behind Thurstonian modeling is that each time a product is
evaluated, it will vary in its intensity. This can be a result of physiological effects
like sensory adaptation, or it can even be due to lack of homogeneity in the
samples of the products themselves. For this reason, it is better to think of rating
values in terms of continuous distributions rather than discrete points.

In other words, sometimes the intensity of a stimulus will be stronger,
sometimes it will be weaker. There will be, however, an average intensity which
will occur most commonly. Such variation in intensity can be represented by a
continuous distribution. And the normal distribution is the most common choice.

Various discrimination methods such as duo-trio and triangular methods are
widely used in the area of sensory research and the main purpose of using these
discrimination methods is to determine the distance between mean stimuli selected
from normal distributions. See, e.g,, O’'Mahony(1992, 1995) and David and Trivedi
(1962).

In the triangular method, the subject is instructed to select out of three stimuli
(two drawn from one stimulus set and one from another stimulus set) the one
which is perceptually different from the other two. In the duo-trio method, one of
the three stimuli is a designated standard and the subjects’s task is to identify
which of the other two stimuli is perceptually most similar to the standard.

In this paper, we mainly focus to the triangular method and evaluate its
performance under various conditions, which is an extension of Ennis and Mullen
(1985, 1986).

2. Triangular method

The normal Thurstonian model for the triangular method was first given by
Frijters(1979) in which the sensory values were assumed to be drawn from
normal density of equal variances. In general, we assume that there are two sets

of stimuli S, and S,. We sample from both stimulus sets and at least two
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stimuli are drawn from at least one of the stimulus sets.

The stimuli S,, and Syl. give rise to corresponding sensory values of
magnitudes x; and y;, where x;"=(x;,""",x;), and ¥,’=(¥;,*",¥,,) and
n 1s the number of dimensions. The sensory values are mutually independently

distributed with x; having density function f(x) and y; having density function

(). The Lp—distance between x; and y; is defined by

1p
o= [; |xik_yjk|p] .

Assume that the probability densities f(x) and f(y) are multivariate normal
with means g, and p,. In the multivariate Euclidean model with p=2 for the

triangular method, a correct response will be obtained if

(i) gl(xlk—@k)2< ;(x1k_yk)2 and g(xm—x%)z( z"(xzk“h)z

for triangles composed of S,,, S;,, and S,; or if

(i) h;(ylk_ka)2< g;(ylk_xk)z and /'Z‘(ylk_y%)2< g‘(yzk—xk)z

for triangles composed of S, , S,,, and S,.

The distance between g, and g, will be denoted as d’, which is sometimes

called a level of discriminal distance or a sensory difference. We note that
mathematical formulation for the correct response was given by Ennis and Mullen
(1986).

The extent to which a sensory difference exists, namely, d > 0, has been
quantified in various ways. One obvious way is to use the probability of correct

response ( P,) for a particular method. Ennis and Mullen(1986) conducted a

Monte-Carlo simulation study to evaluate the effect of d° on P, for different

numbers of independent sensory variables (upto 10 dimensions). In addition, they
evaluated the effect of correlation structure and unequal variances (upto 2

dimensions) on P,.
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From the result, we see that when the number of sensory dimensions is greater
than 1, the P, for the triangular method is not monotonically related to d  but
depends in a particular way on dimensionality, correlation structure and the
relative orientation of the sensory values in a multidimensional space. But the
effect of unequal variances on the correlated sensory values is still unknown.

3. Unequal variances and correlated variables

In order to evaluate the performance of the triangular method by P, under
various correlation structures with unequal variances, we performed an extensive
Monte-Carlo simulation by generating 100,000 sets of triangles from multivariate
normal distributions for each case. We used a random number generator builtin
SAS 6.12 package.

3.1 Unequal variances
<Table 1> shows the effect of unequal variances of the stimulus sets on P,

when d’=0. P, values are almost the same when the variance-ratio is close to 1.
In this case it is evident that dimensionality has a minimal effect. Theoretically,
when the triangular method is performed between identical stimulus sets, P, is
1/3 regardless of dimensionality.

As one might expect, P, increases as the variance-ratio increases. Under a
fixed variance-ratio, increasing dimensionality results in an increase in P,. This
effect becomes more evident as the variance-ratio increases. This result shows
that for the triangular method the multidimensionality itself is an important
determinant of discrimination between stimulus sets.

In <Figure 1>, all five lines gradually increase as the variance-ratio increases
but have different slopes depending on their dimensions. The slopes become
steeper as dimension increases. This means that the higher dimension we have

the more influenced is P, by the variance-ratio.

3.2 Unequal variances under correlated variables

" When the variables are independent, the probability of a correct response will
depend on the distance between the means of the stimulus sets and the number of
variables involved in the distance estimate. It will not depend on the relative
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orientation of the stimulus sets in the multidimensional space.

< Table 1 > Estimated probability of a correct response, P,., as a function of
variance-ratio when d’'= 0

variance number of dimensions
ratio 1 2 3 4 5
1.0 0.33403 0.33308 0.33378 0.33393 0.33357
15 0.33881 0.33830 0.34346 0.34562 0.34484
2.0 0.34329 0.35162 0.35621 0.36396 0.36944
25 0.35391 0.36408 0.37437 0.38197 0.39255
3.0 0.35878 0.37733 0.38788 0.40044 0.41132
35 0.36619 0.38677 0.40462 0.41744 0.42694
4.0 0.37343 0.39751 0.41333 0.43175 0.44267
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< Figure 1 > Plot of P, values given in Table 1

But when the sensory values are correlated, P, also depends on the degree of
correlation and on the relative orientation of the difference between sets. In order
to illustrate this effect, consider Figures 2-3 in which stimulus sets differ by 3
standard units ( d’=3) in two dimensions and for which correlation coefficient ( o)
is 04 and 0.8, respectively. Each of them represents a weak correlation and a
strong correlation, respectively.

In the Figures 2-3, we observe that periodicity of the P, curves are very

similar to sine curves with period of 180°. Moreover the patterns of the four P,

curves are almost the same. And, all P, curves keep regular intervals among

them regardless of relative orientation. This means that variance-ratio behaves
independently of the relative orientation.
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P, curves attain the minimum at between 40° and 50° and the maximum at
between 130° and 140°. Therefore we chose 45° and 135° as the standards of
discrimination.

On each P, curve with the same variance-ratio, the maximum value of P, for

o= 0.8 is larger than that for o= 04. In contrast, the minimum value of P, for

o= 08 is smaller than that for o= 04. This result shows that the effect of
orientation increases as o increases. We confirmed this pattern by another
simulation and the results are plotted in Figures 4-5.

As expected, when the orientation is 45°, the minimum value of P, curve
decreases as p increases and when orientation is 135°, the maximum value of
P, curve increases as ¢ increases. In this case of d’= 3, the boundary of two

sets becomes ambiguous as the variance-ratio increases. Hence the P. decreases
as the variance-ratio increases.

< Table 2 > P, for different relative orientations of stimulus coordinates in a

2-dimensional space when correlation coefficient ( p) is 0.4 and
discriminal distance (d’) between stimuls sets=3.

Orientation Va.riance ratio (VR)
(unit: degree) 1 2 3 4
0 0.75018 066774 0.62298 0.59481
30 0.70110 0.61981 0.58657 0.56611
60 0.69869 062210 0.58455 0.56276
90 0.74877 0.66469 0.62299 0.59770
120 0.79841 0.70471 0.65311 0.62799
150 0.79656 0.70848 0.65557 0.62586
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< Figure 2 > Plot of P, values given in Table 2
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< Table 3 > P, for variance-ratios and relative orientations of stimuius coordinates
in a 2-dimensional space when ©=0.8 and 4’ =3.0.

orientation variance ratio (VR)
(unit: degree) 1 2 3 4

0 0.77660 0.69556 0.65402 0.62391
30 0.67093 0.59522 0.56274 0.54639
60 0.66825 0.59931 0.56399 0.54613
90 0.77470 0.69567 0.65495 0.62485
120 0.85835 0.77717 0.72317 0.68892
150 0.85689 0.77538 0.72109 0.68827

0 20 40 60 80 100 120 140 160 180
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< Figure 3 > Piot of P, values given in Table 3

< Table 4 > P, for variance-ratios and correlations between variables when relative

orientations of stimulus coordinates in a 2-dimensional space is
45° and d’'=30.

variance ratio (VR)

correlation
2 3 4
0.1 0.73011 0.64619 0.60584 0.57976
0.2 0.71778 0.63660 0.59473 0.57167
0.3 0.70379 0.62598 0.58979 0.56553
04 0.69589 0.61971 0.57795 0.55851
05 0.68414 0.60723 0.56660 0.55331
06 0.66796 0.59653 0.56148 0.54458
0.7 0.66049 0.58633 0.55445 0.53951
0.8 0.65007 0.58247 0.54723 0.53316

0.9 0.63951 0.56964 0.53938 0.52343
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< Figure 4 > Plot of P, values given in Table 4

< Table 5 > P, for variance-ratios and correlations between variables when relative
orientations of stimulus coordinates in a 2-dimensional space is
135° and d'=3.0.

correlation

variance ratio (VR)

2 3 4

0.1 0.75532 0.67035 0.62286 0.59666
02 0.77365 0.68246 0.63515 0.60479
0.3 0.78812 0.69461 0.64634 0.61737
0.4 0.80504 0.71132 0.66036 0.62969
0.5 0.82209 0.72937 0.67765 0.64408
0.6 0.83751 0.74718 0.69403 0.66144
0.7 0.85396 0.76696 0.71040 0.67722
0.8 0.86764 0.78567 0.73357 0.69646
09 0.87797 0.80254 0.75579 0.72367
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< Figure 5 > Plot of P, values given in Table 5
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4, Concluding Remarks

Extending the previous work by Ennis and Mullen(1986), we evaluated the P,

of the triangular method under various conditions. Even when d° is zero, the
possibility of choosing the odd stimulus correctly increases as the variance-ratio
increases. The effect of the variance-ratio increases as dimensionality goes higher.
However, when d° is not zero, namely, when the stimulus sets are not identical,
the boundary between sets becomes ambiguous as the variance-ratio increases so
that one cannot discriminate one set from the other easily. Hence increasing
variance-ratio results in an decrease of P,.

When variables are correlated within stimulus sets P, depends on the degree of
correlation and on the relative orientation between stimulus sets. We also observed
the periodicity according to orientations. Further, it turned out that the variance-
ratio does not have any interaction with orientation and correlation. We confirmed
it by the regular interval between curves or lines given in Figures 2-5.

In summary, we observed the dependence of P, on dimensionality, the
variances of stimulus sets, and the relative orientation of the stimulus sets.

Finally we note that this type of study can be applied similarly to other

discrimination methods to assess characteristics of P,.
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