• 제목/요약/키워드: Modeling and Prediction

검색결과 1,889건 처리시간 0.031초

고밀도 금속 플라즈마 전기전도도 예측모델 (Prediction Model on Electrical Conductivity of High Density Metallic Plasma)

  • 김경진
    • 한국추진공학회지
    • /
    • 제26권6호
    • /
    • pp.1-9
    • /
    • 2022
  • 본 연구에서는 현대적 전기식 기폭관의 해석 모델링을 대상으로 실용적 적용이 가능한 금속성 플라즈마 조성비 및 전기전도도 계산모델이 제시되었다. 현 플라즈마 모델은 기폭관 브릿지 전기폭발 현상 시 발생하는 고밀도 플라즈마 영역의 비이상 플라즈마 효과 보정을 포함하였다. 구리 플라즈마를 대상으로 한 계산 결과는 넓은 온도 범위 및 고밀도 영역에서 해당 측정 결과와 전반적으로 잘 일치하여 기폭관 모델링 대상 적용에 적절함을 보여주었다.

Multilevel modeling of diametral creep in pressure tubes of Korean CANDU units

  • Lee, Gyeong-Geun;Ahn, Dong-Hyun;Jin, Hyung-Ha;Song, Myung-Ho;Jung, Jong Yeob
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4042-4051
    • /
    • 2021
  • In this work, we applied a multilevel modeling technique to estimate the diametral creep in the pressure tubes of Korean Canada Deuterium Uranium (CANDU) units. Data accumulated from in-service inspections were used to develop the model. To confirm the strength of the multilevel models, a 2-level multilevel model considering the relationship between channels for a CANDU unit was compared with existing linear models. The multilevel model exhibited a very robust prediction accuracy compared to the linear models with different data pooling methods. A 3-level multilevel model, which considered individual bundles, channels, and units, was also implemented. The influence of the channel installation direction was incorporated into the three-stage multilevel model. For channels that were previously measured, the developed 3-level multilevel model exhibited a very good predictive power, and the prediction interval was very narrow. However, for channels that had never been measured before, the prediction interval widened considerably. This model can be sufficiently improved by the accumulation of more data and can be applied to other CANDU units.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.73-80
    • /
    • 2024
  • 본 연구는 토픽 모델링과 장단기 기억(LSTM) 신경망을 결합하여 한국 종합주가지수(KOSPI) 예측의 정확도를 향상하는 방법을 제안한다. 본 논문에서는 LDA(Latent Dirichlet Allocation) 기법을 이용해 금융 뉴스 데이터에서 금리 인상 및 인하와 관련된 10개의 주요 주제를 추출하고, 추출된 주제를 과거 KOSPI 지수와 함께 LSTM 모델에 입력하여 KOSPI 지수를 예측하는 모델을 제안한다. 제안된 모델은 과거 KOSPI 지수를 LSTM 모델에 입력하여 시계열 예측 방법과 뉴스 데이터를 입력하여 토픽 모델링하는 방법을 결합하여 KOSPI 지수를 예측하는 특성을 가진다. 제안된 모델의 성능을 검증하기 위해, 본 논문에서는 LSTM의 입력 데이터의 종류에 따라 4개의 모델(LSTM_K 모델, LSTM_KNS 모델, LDA_K 모델, LDA_KNS 모델)을 설계하고 각 모델의 예측 성능을 제시하였다. 예측 성능을 비교한 결과, 금융 뉴스 주제 데이터와 과거 KOSPI 지수 데이터를 입력으로 하는 LSTM 모델(LDA_K 모델)이 가장 낮은 RMSE(Root Mean Square Error)를 기록하여 가장 좋은 예측 성능을 보였다.

Bayesian Spatial Modeling of Precipitation Data

  • Heo, Tae-Young;Park, Man-Sik
    • 응용통계연구
    • /
    • 제22권2호
    • /
    • pp.425-433
    • /
    • 2009
  • Spatial models suitable for describing the evolving random fields in climate and environmental systems have been developed by many researchers. In general, rainfall in South Korea is highly variable in intensity and amount across space. This study characterizes the monthly and regional variation of rainfall fields using the spatial modeling. The main objective of this research is spatial prediction with the Bayesian hierarchical modeling (kriging) in order to further our understanding of water resources over space. We use the Bayesian approach in order to estimate the parameters and produce more reliable prediction. The Bayesian kriging also provides a promising solution for analyzing and predicting rainfall data.

단일공 발파파형 중첩모델링 자료를 이용한 지반 진동의 예측 (Prediction of Ground Blasting Vibration using Superposition Modeling Data of Single Hole Blasting Waveform)

  • 김종인;강추원
    • 터널과지하공간
    • /
    • 제17권6호
    • /
    • pp.484-492
    • /
    • 2007
  • 국내에서는 주로 환산거리 진동예측식에 의한 발파진동 예측 방법이 사용되고 있다. 그러나 이러한 환산거리방식은 실규모의 발파가 시행되어져야 할 필요성이 있다. 최근 국내에서는 터널 등의 공사 시행 전 사전 조사단계에서 발파진동의 영향권을 예측하려는 시도로서 지질 조사용 시추공 등에 장약 발파하여 지반진동을 측정하고 본 발파의 발파 진동을 예측하는 방법이 사용되고 있다. 그러나 이러한 발파진동 예측 방법은 본 발파시의 진동의 전달 특성을 완전하게 반영하지는 못한다. 이러한 발파진동 예측방법의 결점을 보완하기 위하여 본 연구에서는 사전 조사 단계의 단일공 파형 중첩 모델링을 통하여 발파진동을 예측하는 방법을 개발하였다.

마코프 모델에 기반한 시계열 자료의 모델링 및 예측 (Modeling and Prediction of Time Series Data based on Markov Model)

  • 조영희;이계성
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.225-233
    • /
    • 2011
  • 주식 가격이나 경제 지표, 사회적 현상의 추세나 변화 등은 통상 시간에 따라 변화하기 때문에 시계열 자료로 구분된다. 시계열 자료는 시간 축에 대해 변화하는 자료의 표현 가치뿐 아니라 그 변화 추세나 향후 방향성까지 제시할 수 있다는 점에서 이에 대한 방법론에 대해 많은 연구와 노력이 지속되어 왔다. 본 논문에서는 전통적으로 예측 모형을 구축하여 예측하는 방법을 취하되 그 모형이 복잡하고 정교한 모델을 활용하여 예측 정확도를 높이려는 시도와는 달리 자료 클러스터링 방법과 자료 구간 선정을 통해 예측정확도를 높이려 시도하였다. 기본 모델은 마코프 모델이다. 구간별 유사 구간을 추출하여 모델링하는 구간별 모델링 방법과 클러스터링을 통한 그룹별 모델링을 통해 모델의 예측정확도를 개선하려 시도하였다. 실험을 통해 클러스터링을 거친 그룹별 마코프 모델이 정확도를 개선 시켰으나 예측율은 현저히 떨어지는 결과를 낳았다.

오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법 (A Hybrid Data Mining Technique Using Error Pattern Modeling)

  • 허준;김종우
    • 한국경영과학회지
    • /
    • 제30권4호
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.

Quantum Computing Impact on SCM and Hotel Performance

  • Adhikari, Binaya;Chang, Byeong-Yun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.1-6
    • /
    • 2021
  • For competitive hotel business, the hotel must have a sound prediction capability to balance the demand and supply of hospitality products. To have a sound prediction capability in the hotel, it should be prepared to be equipped with a new technology such as quantum computing. The quantum computing is a brand new cutting-edge technology. It will change hotel business and even the whole world too. Therefore, we study the impact of quantum computing on supply chain management (SCM) and hotel performance. Toward the goal we have developed the research model including six constructs: quantum (computing) prediction, communication, supplier relationship, service quality, non-financial performance, and financial performance. The result of the study shows a significant influence of quantum (computing) prediction on hotel performance through the mediating role of SCM in the hotel. Quantum prediction is highly significant in enhancing the SCM in the hotel. However, the direct effect between the quantum prediction and hotel performance is not significant. The finding indicates that hotels which would install the quantum computing technology and utilize the quantum prediction could hugely benefit from the performance improvement.

A network traffic prediction model of smart substation based on IGSA-WNN

  • Xia, Xin;Liu, Xiaofeng;Lou, Jichao
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.366-375
    • /
    • 2020
  • The network traffic prediction of a smart substation is key in strengthening its system security protection. To improve the performance of its traffic prediction, in this paper, we propose an improved gravitational search algorithm (IGSA), then introduce the IGSA into a wavelet neural network (WNN), iteratively optimize the initial connection weighting, scalability factor, and shift factor, and establish a smart substation network traffic prediction model based on the IGSA-WNN. A comparative analysis of the experimental results shows that the performance of the IGSA-WNN-based prediction model further improves the convergence velocity and prediction accuracy, and that the proposed model solves the deficiency issues of the original WNN, such as slow convergence velocity and ease of falling into a locally optimal solution; thus, it is a better smart substation network traffic prediction model.

퍼지로직을 이용한 위치 예측과 매니퓰레이터의 제어 (Fuzzy logic for a position prediction and manipulator control)

  • 이승환;임종태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.152-155
    • /
    • 1991
  • A solution to the problem of robot manipulator tracking of a smoothly moving object is given. It is shown that fuzzy prediction rule, fuzzy control can compensate the adverse effects of noise, time delay, unknown object trajectory, and robot modeling uncertainty. Simulations show that the fuzzy logic control results in acceptable precision,

  • PDF