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Abstract

Spatial models suitable for describing the evolving random fields in climate and environmental systems have
been developed by many researchers. In general, rainfall in South Korea is highly variable in intensity and
amount across space. This study characterizes the monthly and regional variation of rainfall fields using the
spatial modeling. The main objective of this research is spatial prediction with the Bayesian hierarchical
modeling (kriging) in order to further our understanding of water resources over space. We use the Bayesian
approach in order to estimate the parameters and produce more reliable prediction. The Bayesian kriging
also provides a promising solution for analyzing and predicting rainfall data.
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1. Introduction

Climate variability, its extremes and possible future changes have a strong impact on mankind.
Some countries have already faced devastating experiences of the ongoing climate change phe-
nomena. The twin but opposite phenomena of El Nino (drought) and La Nina (massive rainfall)
have caused numerous deaths and destruction of crops (Park and Heo, 2008). The analysis of
the environmental/climate data is very important both from an environmental perspective and for
understanding the climate change.

The need for accurate modeling of the rainfall data set is vital. The amount of monthly rainfall and
its seasonal distribution are crucial factors for understand-ing the spatial distribution of different
ecological units, regardless of the scale of analysis (Bailey, 1998). The modeling of extreme rainfall
or local severe storm is very important in the design of water-related structures, in agriculture,
weather modification, and monitoring climate changes phenomena (Svensson and Rakhecha, 1998).

Spatial data, especially, geostatistical (point-referenced) data, are becoming increasingly utilized
in the study of many scientific fields due to the accessibility of data monitoring systems (Eom et
al., 2006). When data are available from the underlying spatial process, computationally efficient
method is needed for analysis. Markov Chain Monte Carlo(MCMC) is a very powerful tool often
used for the Bayesian analysis. Especially, geostatistical approaches are usually considered quite
sensible when treating precipitation data.
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Geostatistical models have been used very often in both classical and Bayesian framework. Consider-
able work has been done in the area of modeling spatially correlated data in a Bayesian perspective;
see Le and Zidek (1992), Handcock and Stein (1993), Brown et al. (1994), Handcock and Wallis
(1994), De Oliveira et al. (1997), Ecker and Gelfand (1997) and Diggle et al. (1998).

We now suggest a spatial model with application to precipitation data using Bayesian framework.
In Section 2, we build a spatial model and introduce the Bayesian kriging approach. Section 3
contains the real application and results with precipitation data in South Korea. Conclusions and
discussion are presented in Section 4.

2. Spatial Model and Bayesian Kriging

Geostatistical methods are applied to the point-referenced data, where a location at which a variable
of interest is measured, varies continuously over a fixed spatial region. Modeling approaches from
geostatistics are based on (semi)variogram modeling and spatial interpolation method, which is well
known as kriging. In order to present geostatistical approaches, the stationarity condition in spatial
statistics needs to be introduced. The spatial process, {Y (s),s € D C R*} where D is a fixed subset
of 2-dimensional Euclidean space, R?. Kriging can predict the value at an unobserved location, so,
given observations of the process {Y'(s),s € D}. Kriging is also called the linear unbiased predictor
with minimum variance.

2.1. Spatial model

Let y = {Y(s),s € D} be a spatial process that is observed at locations, { = {s1,...,8,}. We
assume the following additive decomposition

Y(SZ) =[,L(Si) +€(Si), 7= 1,...,"’L, (21)

where Y'(s;) represents (a function of) the measured outcome at location s;, u(s;) is the large-scale
variation (mean function) and e(s;) represents an error process or small-scale variation. When we
explain the large-scale variation with some geographic location information (e.g., longitude and
latitude), we can formulate the model shown in (2.1) as

y=XpB+e¢, (2.2)

where X = {X(s:) }i=1,...,nij=1,...p is the covariate matrix, 3 is a p x 1 column vector of coefficients
for the covariate matrix, and € = (e(s1),...,€(s,))” ~ N,(0,Lq,) denotes a spatial error process
associated with parameter vector, @;. We can decompose the spatial error process, € in (2.2) into
the two processes, with which (2.2) are expressed as

y=XB8+¢€ +¢€, (2.3)

where € ~ N, (0,7%I) is an n x 1 vector of independent and identically distributed vector of mea-
surement errors and €' ~ N,,(0,0%Hy) is an n x 1 random vector capturing the spatial correlation
under the stationary condition. Here, 81 = (7%,02,$)7, g, = r?I+0>H, and H, is the correlation
matrix with a parameter, ¢.
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2.2. Bayesian kriging

In order to use a Bayesian approach, we need to specify a prior distribution on 07 = (,BT,olT),
7(@). Common choice for the prior distribution is

P

m(0) = m(B)n(61) = [[ 7(8)) x w (o) 7 (+*) m(¢),

=0

where 7(3) will be a noninformative prior, and Inverse-Gamma distribution is commonly used for
n(0?) and 7(7?). Specification of 7(¢) depends on choice of the correlation function p, but Uniform
distribution is usually regarded as 7(¢). Then, the parameter estimates are obtained from the
posterior density 7(8|y) as follows:

m(0y) o f(y|0) x (6),
where f(y|@) is the multivariate normal distribution as
y| @ ~ N, (XB, 7’1+ 0°Hy) .

To make inference on the parameters, we need to the marginal posterior densities, for example,

m(¢ly) = ///77 (B,0°, 7°, 6|y) dBdo” dr’.

In general, the marginal posterior densities are not expressed in a closed form. Therefore, numerical
integration or Markov Chain Monte Carlo(MCMC) technique is required.

The model shown in (2.3) can equivalently be expressed in the following hierarchical framework:

y|8,e' ~ N, (X8 + €, 7'21)
€'lc”,¢ ~ N, (0, c°H(9)),

where o2 and ¢ may be viewed as hyper-parameters in Bayesian context. We now have an interest in
estimating the spatial model of €!|y and obtaining spatial predictions of €' (so)|y at a new location
so. Finally, the Bayesian kriging is the prediction at a new location so by using the covariate values
at the location x(so) and the set of covariates for the observed locations, X. So, for each of the
new locations, we can calculate the predictive posterior values from the density

T (Yoly, X, x(s0)) = / r(Yoly, 0, x(s0)) (0], X) d6.

We may estimate 7(Yo|y, X, x(so)) using MCMC method for most priors on @ in practice. More
details are found in Cressie (1993) and Banerjee (2004).

3. Real Application

We summarized the spatial modeling based on the Bayesian kriging approach in Section 2. In this
section, we try to apply the Bayesian estimation procedure as well as other two popular estimation
ones named Maximum likelihood(ML) and Restricted Maximum likelihood(REML) ones to real
data and make the kriging (interpolation) maps. Finally, we compare their performances by means
of the validation.
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Figure 3.1. Geographic location of meteorological monitoring stations

3.1. Data

Before going further to the real application based on Section 2, we briefly explain the sources of
the real data. We consider two different but relevant monitoring networks; the ground monitoring
station network and the automated monitoring station one. Both of the networks have been installed
for the preparation against flood (or drought) and the appropriate usage of water resources. We
have the 69 ground monitoring stations in South Korea, the geographical domain considered in this
study (Figure 3.1). The automated monitoring network make real-time meteorological observations
at isolated or remote places, for example, inaccessible mountainous area and unapproachable islands.
About 347 automated monitoring stations are located in South Korea (Figure 3.1).

Now we employ the Bayesian universal kriging method for analyzing the precipitation data, which
were measured at the automated monitoring stations. The values with unit of millimeter are the
monthly averages obtained for July, August, and September, 2007. Once we construct the spatial
model with the automated monitoring stations data, we evaluate validity of the model by means
of another precipitation data set, which was made from the 69 ground monitoring stations. In
order identify the large-scale variation p(s;) shown in (2.1), we first checked the relations between
location information and the precipitation measurement. As can be seen from Figure 3.2, the
precipitation values are related to the longitude (quadratic association) and the latitude (linear
association). Hence we considered the second-order polynomial function of location information as
the large-scale variation, that is,

p(si) = Bo + X1(s:)B1 + X2(8:)B2 + X1(8:)8s + X5 (8:)Ba + X1(s:) X2(s:)Bs,

where X1(s;) and Xo(s;) are longitude and latitude of station s;, respectively. For the correlation
matrix, Hy = {h(¢):;} of €', we considered the following exponential correlation structure

h(QS)” :exp{—”—si;—sjﬂ}, i,j:l,...,n,

where ||s; — s;|} denotes the Euclidean distance between locations, ¢ and j.
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Figure 3.2. Scatterplots of precipitation measurements and location information.

3.2. Bayesian modeling

The Bayesian hierarchical modeling is achieved using some functions in “spBayes” package (Finley et
al., 2008) in R (R Development Core Team, 2008). Noninformative priors were assigned to all hyper-
parameters. There are two types of parameters: 1) regression coefficients, 8 = (8o, 81, . .- ,Bp) in
the mean function, and 2) partial sill(o?), nugget (7°), and range (¢) in variance-covariance matrix.
We assume that the measurement error process and spatial process are mutually independent, that
is €” L €'. The prior distributions are specified as follows:

B; ~ flat prior 0,1,...,p,

Z =
1/¢ ~ Uniform (d;j, 1),
o ~ Inverse-Gamma(0.001,0.001) and
(

72 ~ Inverse-Gamma(0.001,0.001), (3.1)

where das = 500km denotes the maximum of distances between the automated monitoring stations.
Using “spBayes” package, we obtained samples from the posterior densities of the parameters. To
check the convergence problem, we used several graphical techniques, such as the trace plot and
autocorrelation plot. More general discussion of MCMC convergence monitoring is available in
Carlin and Louis (2000). We considered one chain with burn-in of 15,000 and 5,000 updates. Initial
parameter vector is set to 8 = (0,0,0,0,0,0,2500, 1000, 25)"".

3.3. Result

Table 3.1 displays the parameter estimates and the 95% confidence intervals obtained from the
three estimation method considered in this study: Maximum likelihood, Restricted ML, Bayesian
hierarchical estimation methods. The parameter estimates in the large-scale variation are quite
similar regardless of the estimation methods while the confidence intervals are slightly different.
The Bayesian estimation method provides the confidence intervals for the parameters in the spatial
covariance structure, Sg, = 7214+ 0?H,. The posterior means of the parameters using the Bayesian
approach are quite similar with the estimates from the other two estimation methods. In case of
the spatial range parameter, ¢, all the estimation methods show that the precipitation value at
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Table 3.1. Parameter estimates and 95% confidence intervals

Maximum Likelihood Restricted ML Bayesian
Est. 95% CI Est. 95% CI Est.? 95% CI¥
Bo 354.4 353.0 355.7 354.2 352.4 356.0 354.1 308.9 396.7
B —0.1456 -0.1371 -0.1371 —-0.1404 -0.1512 -0.1297 -0.1375 —0.3540 0.1037
B2 —0.0410 —0.0472 —0.0348 —0.0420 —-0.0500 —0.0340 —0.0452 —0.2344 0.1256°
B3 —0.0054 —0.0055 —0.0053 —0.0052 —0.0053 —0.0051 —0.0052 -—0.0073 —0.0026
B4 —0.0002 -0.0003 0.0001 —0.0003 —0.0004 —0.0002 —0.0003 —0.0018 0.0010
Bs 0.0023 0.0022 0.0024 0.0022 0.0021 0.0023 0.0022 0.0002 0.0040
o2 2370.7 2661.4 2981.3 1795.2 6924.4
T2 954.4 1076.3 1036.8 484.6 1645.5
¢ 20.0 27.6 32.8 14.9 131.3

Notes: Est.: estimate; ': Posterior mean; ¥: 95% Bayesian confidence interval.

a monitoring station is influenced only by neighboring stations, which are located within a small
distance. Moreover, the upper limit of the 95% confidence interval is at most 131.3, which are about
25% of maximum distance. The local downpours or local severe storm are the characteristics of
precipitation in summer, South Korea. Therefore, we guess the range of spatial correlation is not
too long.

Figure 3.3 illustrates the prediction maps based on the estimates displayed in Table 3.1. In order
to construct the prediction map for each estimation method, we preassigned the lattice grid points
covering the spatial domain. In the Bayesian method, we used the mean of predictive posterior
values at each point. As can be seen from Figure 3.3(a), (c), (e), the maps of kriging estimates
look quite similar. The prediction maps show that the eastern region of Gyoungsang province and
Seoul have smaller precipitation than average and south-western region of Gyoungsang province and
north-eastern region of Kangwon province are predicted to have the largest precipitation. Because
the rainy season over Korea, called Changma, continues for a month from late June to late July.
A short period of rainfall comes in early September when the monsoon front retreats back to the
north. In case of the kriging standard deviation (Figure 3.3(b), (d), (f}), the Bayesian method has
much smaller variation for the prediction than the Maximum likelihood-based estimation methods.
The natural reason is that the posterior values for the parameters are calculated and refined via an
MCMC simulation.

In order to check the validity of the model suggested in (2.3) based on the estimation methods, we
predict the precipitation values at each of the 69 ground monitoring stations and compare them
with the observed values. The prediction based on the ordinary least squares estimation method is
also considered. For the comparison, we considered the following relationship between the predicted
values, {¥(s:)} and the observed ones, {Y(s;)}:

Y(si) =ao+a1Y(s;) +e(s), i=1,...,m(=69). (3.2)
We then computed the intercept (ap) and the slope (a1) for each estimation method. By using the

residuals {€(s;)} from the model in (3.2), we obtained the following statistics:

_ ANy
MSPE—mZe(sl)

i=1
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Figure 3.3. Maps of kriging estimates (first column) and the standard deviations.



432 Tae-Young Heo, Man Sik Park

Table 3.2. Comparison of predictions and observations

OLS ML ReML Bayesian
Est. P-value Est. P-value Est. P-value Est. P-value
Intercept 192.15 <0.001 155.05 <0.001 150.18  <0.001 152.19  <0.001
Slope 0.40 <0.001 0.52 <0.001 0.54 <0.001 0.53 <0.001
MSPE 56.17 54.24 54.05 54.17
Mean(Error) -1.37 0.68 0.54 0.51
Median(Error) 7.67 6.91 5.60 4.83

Notes. Est.: estimate

and mean (median) of the residuals. From Table 3.2, we know that, in terms of precision(MSPE)
and unbiasedness (mean(median) of the errors), the estimation methods taking spatial correlation
structure into account outperforms the least squares estimation method in that the former have
less MSPE and biases closer to zero than the latter. We also know that the slope estimates from
the estimation methods focused on in this paper are closer to one, which is an ideal situation under
the assumption that the two station network captures the same underlying spatial process although
all the estimates for intercept are quite far from zero. Among the estimation methods with spatial
correlation structure, the Bayesian method produces slightly more reliable predicted values in terms
of the bias.

4. Conclusions

In this paper, we employed the Bayesian kriging method for analyzing the precipitation data along
with the commonly used estimation methods. We found that the spatial correlation(dependency)
structure should be incorporated the better prediction outcomes even though the spatial range is
not quite long. In conclusion, the Bayesian estimation method provides some additional information
that the maximum-likelihood-based estimation methods do not and, hence, can be an alternative
for the spatial data analysis.
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