• Title/Summary/Keyword: Modeling Scheme

Search Result 1,044, Processing Time 0.022 seconds

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Development of Performance Evaluation Metrics of Concurrency Control in Object-Oriented Database Systems

  • Jun, Woochun;Hong, Suk-Ki
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.107-113
    • /
    • 2018
  • Object-oriented databases (OODBs) canbe used for many non-traditional database application areas such as computer-aided design, etc. Usually those application areas require advanced modeling power for expressing complicated relationships among data sets. OODBs have more distinguished features than the traditional relational database systems. One of the distinguished characteristics of OODBs is class hierarchy (also called inheritance hierarchy). A class hierarchy in an OODB means that a class can hand down the definitions of the class to the subclass of the class. In other words, a class is allowed to inherit the definitions of the class from the superclass. In this paper, we present performance evaluation metrics for class hierarchy in OODBs from a concurrency control perspective. The proposed performance metrics are developed to determine which concurrency control scheme in OODBs can be used for a given class hierarchy. In this study, in order to develop performance metrics, we use class hierarchy structure (both of single inheritance and multiple inheritance), and data access frequency for each class. The proposed performance metrics will be also used to compare performance evaluation for various concurrency control techniques.

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬 내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Wavier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convective terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. Considering computation times, $\kappa$-$\varepsilon$ turbulence model with wall function is used.

The relevance of turbulent mixing in estuarine numerical models for two-layer shallow water flow

  • Krvavica, Nino;Kozar, Ivica;Ozanic, Nevenka
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.95-109
    • /
    • 2018
  • The relevance of turbulent mixing in estuarine numerical models for stratified two-layer shallow water flows is analysed in this paper. A one-dimensional numerical model was developed for this purpose by extending an immiscible two-layer model with an additional source term, which accounts for turbulent mixing effects, namely the entrainment of fluid from the lower to the upper layer. The entrainment rate is quantified by an empirical equation as a function of the bulk Richardson number. A finite volume method based on an approximated Roe solver was used to solve the governing coupled system of partial differential equations. A comparison of numerical results with and without entrainment is presented to illustrate the influence of entrainment on both the salt-water intrusion length and lower layer dynamics. Furthermore, one example is given to demonstrate how entrainment terms may help to stabilize the numerical scheme and prevent a possible loss of hyperbolicity. Finally, the model with entrainment is validated by comparing the numerical results to field measurements.

A Study on the Reliability Demonstration for Korea High Speed Train Control System (한국형고속철도 열차제어시스템 하부구성요소 신뢰도입증에 관한 연구)

  • Lee, Jae-Ho;Lee, Kang-Mi;Kim, Young-Kyu;Shin, Duc-Ko
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.732-738
    • /
    • 2006
  • This research provides a scheme for Highly Accelerated Stress Test that is necessary to demonstrate reliability prediction of Korean Rapid Transit Railway Train Control System sub-equipment, which is calculated by a relevant standard for failure rate prediction of electronic products. Although determining failure information generated in the process of trial running by statistic analysis is widely accepted as a measure of confirmation for reliability prediction, this research suggests the modeling for System Life Test determined by accelerating stress factors as a measure of confirmation for reliability prediction of sub-equipment unit that is generated ahead of a trial running in System Life Cycle. Consequently, the research demonstrates sub-equipment unit reliability test, which is based on the model derived from Accelerated Stress Test, according to accuracy level and the number of samples, and conducts an official experiment by making out a reliability test procedure sheet based on test time as well.

"3+3 PROCESS" FOR SAFETY CRITICAL SOFTWARE FOR I&C SYSTEM IN NUCLEAR POWER PLANTS

  • Jung, Jae-Cheon;Chang, Hoon-Sun;Kim, Hang-Bae
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.91-98
    • /
    • 2009
  • The "3+3 Process" for safety critical software for nuclear power plants' I&C (Instrumentation and Control system) has been developed in this work. The main idea of the "3+3 Process" is both to simplify the software development and safety analysis in three steps to fulfill the requirements of a software safety plan [1]. The "3-Step" software development process consists of formal modeling and simulation, automated code generation and coverage analysis between the model and the generated source codes. The "3-Step" safety analysis consists of HAZOP (hazard and operability analysis), FTA (fault tree analysis), and DV (design validation). Put together, these steps are called the "3+3 Process". This scheme of development and safety analysis minimizes the V&V work while increasing the safety and reliability of the software product. For assessment of this process, validation has been done through prototyping of the SDS (safety shut-down system) #1 for PHWR (Pressurized Heavy Water Reactor).

Development of Combustion Diagnostic System for Reducing the Exhausting Gas (배기가스 저감을 위한 연소진단 시스템의 개발)

  • Lee, Tae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2001
  • A criterion for evaluation of burners has changed recently, and the environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the $NO_x$ and CO regulation. Consequently. 'good burner' means one whose thermal efficiency is high under the constraint of $NO_x$ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of $NO_x$ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro- Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro- Fuzzy learning algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of $NO_x$ and CO of the combustion gas was successfully inferred.

  • PDF

Modeling of Input Buffered Multistage Interconnection Networks using Small Clock Cycle Scheme (작은 클럭 주기를 이용한 다단 상호연결 네트워크의 성능분석)

  • Mun Youngsong
    • Journal of Internet Computing and Services
    • /
    • v.5 no.3
    • /
    • pp.35-43
    • /
    • 2004
  • In packet switching using multistage interconnection networks (MIN's), it is generally assumed that the packet movements successively propagate from the last stage to the first stage in one network cycle. However, Ding and Bhuyan has shown that the network performance can be significantly improved if the packet movements are confined within each pair of adjacent stages using small clock cycles. In this paper, an analytical model for evaluating the performance of input-buffered MlN's employing this network cycle approach is proposed, The effectiveness of the proposed model is confirmed by comparing results from the simulation as well as from Ding and Bhuyan model.

  • PDF

Track-following Control of an Optical Pick-up Actuator Using PZT (PZT를 이용한 광 정보저장기기용 액추에이터의 트랙 추적제어)

  • 정동하;박태욱;박노철;양현석;이우철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.385-393
    • /
    • 2004
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(voice coil motor) for coarse motion, for an SFF ODD(small form factor optical disk drive), in order to achieve fast access speed and precise track-following control. Over the past few decades there have been a lot of researches related to the VCM and dual-stage actuator. In this paper, we focus our attention on the design and control of the PZT actuator. Due to the dual cantilever structure. the PZT actuator can generate precise translational tracking motion at its tip to which an optical pickup is attached. and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing it with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

Effect of Random Geometry Perturbation on Acoustic Scattering (기하형상의 임의교란이 음향산란에 미치는 영향)

  • 주관정
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.117-123
    • /
    • 1992
  • In recent years, the finite element method has become one of the most popular numerical technique for obtaining solutions of engineering science problems. However, there exist various uncertainties in modeling the problems, such as the dimensions(geometry shape), the material properties, boundary conditions, etc. The consideration for the uncertainties inherent in the problems can be made by understanding the influences of uncertain parameters[1]. Determining the influences of uncertainties as statistical quantities using the standard finite element method requires enormous computing time, while the probabilistic finite element method is realized as an efficient scheme[2,3] yielding statistical solution with just a few direct computations. In this paper, a formulation of the probabilistic fluid-structure interaction problem accounting for the first order perturbation of geometric shape is derived, and especially probabilistical acoustic pressure scattering from the structure with surrounding fluid is focused on. In Section 2, governing equations for the fluid-structure problems are given. In Section 3, a finite element formulation, based on the functional, is presented. First order perturbation of geometric shape with randomness is incorporated into the finite element formulation in conjunction with discretization of the random fields in Section 4 and 5. Finally, the proposed formulation is applied to a acoustic pressure scattering problem from an infinitely long cylindrical shell structure with randomness of radial perturbation.

  • PDF