• Title/Summary/Keyword: Modeling Efficiency

Search Result 1,694, Processing Time 0.027 seconds

The Relationship with Electronic Trust, Web Site Commitment and Service Transaction Intention in Public Shipping B2B e-marketplace (해운 B2B e-marketplace의 전자적 신뢰, 사이트몰입 및 서비스 거래의도와의 관계성)

  • Kim, Yong-Man;Kim, Seog-Yong;Lee, Jong-Hwan;Shim, Gyu-Yeol
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.113-139
    • /
    • 2007
  • This study aims to, looking from a standpoint of network, has investigated the shipping industry's B2B e-marketplace, the characteristics that can earn electronic trust from the users, and characteristics of the web-site. It has examined the mechanism whereby electronic trust be earned and how it affects web-site involvement and service transaction intention. Ultimately, The study attempts to make proposals whereby such trust can lead for a cooperative trading community in the shipping industry's B2B e-marketplace The Covalence structural equation modeling was designed and empirically tested for the shipping industry's B2B e-marketplace. The shipping industry employees were given questionnaires and data were analyzed. Except for perceived security of the three characteristic factors on the web-site, the perceived site quality and characteristics factors in operation only affected co-variables. Transaction Fairness was determined to be the most important factor among exogenous factors increasing electronic trust. With regards to transaction rules, if a transaction is beneficial only to one side, then no long term transaction will not take place. If the concerned parties properly recognize that transaction fairness is crucial to electronic transaction, then it will enormously contribute to successful operations of shipping e-marketplace. Also, Perceived efficiency in transaction also affects electronic trust. This reduces transaction costs and speeds up and simplifies the transaction process. It has reduced greater time and costs than existing off-line transaction, and would positively affect electronic trust. By making an open forum for participants to obtain information for transaction, they can gather useful information, and at the same time, the web-site operator can provide information, which, in turn, will increase electronic trust in electronic transaction. Furthermore, such formation of trust in electronic transaction influences shipping companies in such a way that they will want to continuously participate in the transaction, raising web-site involvement. The result of increased trust is that shipping companies in the future will do business with each other and form a foundation for continuous transactions amongst themselves. Consequently, the formation of trust in electronic transaction greatly influences web-site involvement and service transaction intention. The results of the study have again proved that in order to maintain continuous business relationship with the current clients, electronic trust in virtual space, which operates the shipping industry's B2B e-marketplace, is important for the interested parties.

  • PDF

Yongdam Dam Watershed Flood Simulation Using GPM Satellite Data and KIMSTORM2 Distributed Storm Runoff Model (GPM위성 강우자료와 KIMSTORM2 분포형 유출모형을 이용한 용담댐 유역 홍수모의)

  • KIM, Se-Hoon;KIM, Jin-Uk;CHUNG, Jee-Hun;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.39-58
    • /
    • 2019
  • This study performed the dam watershed storm runoff modeling using GPM(Global Precipitation Measurement) satellite rain and KIMSTORM2(KIneMatic wave STOrm Runoff Model 2) distributed model. For YongdamDam watershed(930㎢), three heavy rain events of 25th August 2014, 11th September 2017, and 26th June 2018 were selected and tested for 4 cases of spatial rainfalls such as (a) Kriging interpolated data using ground observed data at 7 stations, (b) original GPM data, (c) GPM corrected by CM(Conditional Merging), and GPM corrected by GDA(Geographical Differential Analysis). For the 4 kinds of data(Kriging, GPM, CM-GPM, and GDA-GPM), the KIMSTORM2 was calibrated respectively using the observed flood discharges at 3 water level gauge stations(Cheoncheon, Donghyang, and Yongdam) with parameters of initial soil moisture contents, stream Manning's roughness coefficient, and effective hydraulic conductivity. The total average Nash-Sutcliffe efficiency(NSE) for the 3 events and 3 stations was 0.94, 0.90, 0.94, and 0.94, determination coefficient(R2) was 0.96, 0.92, 0.97 and 0.96, the volume conservation index(VCI) was 1.03, 1.01, 1.03 and 1.02 for Kriging, GPM, CM-GPM, and GDA-GPM applications respectively. The CM-GPM and GDA-GPM showed better results than the original GPM application for peak runoff and runoff volume simulations, and they improved NSE, R2, and VCI results.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

The Effect of Compost Application on Degradation of Total Petroleum Hydrocarbon in Petroleum-Contaminated Soil (유류오염 토양 내 석유계 탄화수소 화합물의 분해에 대한 퇴비의 시용 효과)

  • Kim, Sung Un;Kim, Yong Gyun;Lee, Sang Mong;Park, Hyean Cheal;Kim, Keun Ki;Son, Hong Joo;Noh, Yong Dong;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.268-273
    • /
    • 2015
  • BACKGROUND: Petroleum-contaminated soil from leaking above- and underground storage tanks and spillage during transport of petroleum products is widespread environmental problem in recent years. Application of compost may be the most promising, cost-effective, and eco-friendly technology for soil bioremediation because of its advantages over physical and chemical technology. The objective of this study was to evaluate effect of compost application on degradation of total petroleum hydrocarbon (TPH) in petroleum hydrocarbon-contaminated soil.METHOD AND RESULTS: An arable soil was artificially contaminated by diesel, and compost was applied at the different rate of 0, 10, 30, and 50 Mg/ha. Concentration of TPH in the soil decreased as application rate of compost increased. Degradation efficiency was highest at compost 30 Mg/ha; however, it slightly decreased with compost 50 Mg/ha. Kinetic modeling was performed to estimate the rates of chemical reaction. The correlation coefficient (R2) values for the linear plots using the second-order model were higher than those using the first-oder model. Compost 30 and 50 Mg/ha had the fastest TPH degradation rate in the second-order model. Change of microbial population in soil with compost application was similar to that of TPH. Microbial population in the soil increased as application rate of compost increased. Increasing microbial population in the contaminated soil corresponded to decreased in TPH concentration.CONCLUSION: Conclusively, compost application for soil bioremediation could be an effective response to petroleum hydrocarbon-contaminated soil. The increase in microbial population with compost suggested that compost application at an optimum rate might enhance degradation of TPH in soil.

Dynamic Traffic Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 동적통행배정에 관한 연구)

  • Park, Kyung-Chul;Park, Chang-Ho;Chon, Kyung-Soo;Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.51-63
    • /
    • 2000
  • Dynamic traffic assignment(DTA) has been a topic of substantial research during the past decade. While DTA is gradually maturing, many aspects of DTA still need improvement, especially regarding its formulation and solution algerian Recently, with its promise for In(Intelligent Transportation System) and GIS(Geographic Information System) applications, DTA have received increasing attention. This potential also implies higher requirement for DTA modeling, especially regarding its solution efficiency for real-time implementation. But DTA have many mathematical difficulties in searching process due to the complexity of spatial and temporal variables. Although many solution algorithms have been studied, conventional methods cannot iud the solution in case that objective function or constraints is not convex. In this paper, the genetic algorithm to find the solution of DTA is applied and the Merchant-Nemhauser model is used as DTA model because it has a nonconvex constraint set. To handle the nonconvex constraint set the GENOCOP III system which is a kind of the genetic algorithm is used in this study. Results for the sample network have been compared with the results of conventional method.

  • PDF

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.

Treatment of Malodorous Waste Air by a Biofilter Process Equipped with a Humidifier Composed of Fluidized Aerobic and Anoxic Reactor (폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정을 이용한 악취폐가스의 처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • In this research, a biofilter system equipped with a biofilter process and a humidifier composed of a fluidized aerobic and an anoxic reactor, was constructed to treat odorous waste air containing hydrogen sulfide, ammonia and VOC, frequently generated from pig and poultry housing facilities, compost manufacturing factories and publicly owned facilities. Its optimum operating condition was revealed and discussed. In the experiment of complex feed, the ammonia of fed-waste air was removed by ca. 75% and more than 20% at the stage of the humidifier and the biofilter, respectively. The toluene of the fed-waste air was removed by ca. 20% and more than 70% at the stage of the humidifier and the biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of the humidifier and the biofilter, respectively. In addition, hydrogen sulfide was almost absorbed at the stage of the humidifier so that it was not detected at the biofilter process. In the experiment of ammonia-containing feed, the ammonia of fed-waste air was removed by ca. 65% and 35% at the stage of the humidifier and the biofilter, respectively. Its removal efficiency of ammonia at the stage of the humidifier was 10% less than that in the experiment of complex feed, due to no supply of such carbon source as toluene required in the process of denitrification. In the experiments of complex feed, ammonia-containing feed with and without (instead, glucose) the addition of yeast extract, the absorption rates of ammonia-nitrogen were ca. 0.28 mg/min, 0.23 mg/min and 0.27 mg/min, respectively. The corresponding denitrification rates in the anoxic reactor were 0.42 mg/min, 0.55 mg/min and 0.27 mg/min, respectively. In addition, in the modeling of bubble column(the fluidized aerobic reactor of the humidifier) process, the value of specific surface area(a) of bubbles multiplied by enhanced mass transfer coefficient (E $K_y$) was evaluated to be 0.12/hr.

Characteristics of Pollution Loading from Kyongan Stream Watershed by BASINS/SWAT. (BASINS/SWAT 모델을 이용한 경안천 유역의 오염부하 배출 특성)

  • Jang, Jae-Ho;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Lee, Sae-Bom
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.200-211
    • /
    • 2009
  • A mathematical modeling program called Soil and Water Assessment Tool (SWAT) developed by USDA was applied to Kyongan stream watershed. It was run under BASINS (Better Assessment Science for Integrating point and Non-point Sources) program, and the model was calibrated and validated using KTMDL monitoring data of 2004${\sim}$2008. The model efficiency of flow ranged from very good to fair in comparison between simulated and observed data and it was good in the water quality parameters like flow range. The model reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The results of pollutant loads estimation as yearly (2004${\sim}$2008), pollutant loadings from 2006 were higher than rest of year caused by high precipitation and flow. Average non-point source (NPS) pollution rates were 30.4%, 45.3%, 28.1% for SS, TN and TP respectably. The NPS pollutant loading for SS, TN and TP during the monsoon rainy season (June to September) was about 61.8${\sim}$88.7% of total NPS pollutant loading, and flow volume was also in a similar range. SS concentration depended on precipitation and pollution loading patterns, but TN and TP concentration was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. SWAT based on BASINS was applied to the Kyongan stream watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and non-point sources in watershed scale.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles (온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락)

  • Oh, Chi Yeong;Kang, Nam-Hwa
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.292-303
    • /
    • 2021
  • This study identifies the terms frequently used together with energy in online science news articles and topics of the news reports to find out how the term energy is used in everyday life and to draw implications for science curriculum and instruction about energy. A total of 2,171 online news articles in science category published by 11 major newspaper companies in Korea for one year from March 1, 2018 were selected by using energy as a search term. As a result of natural language processing, a total of 51,224 sentences consisting of 507,901 words were compiled for analysis. Using the R program, term frequency analysis, semantic network analysis, and structural topic modeling were performed. The results show that the terms with exceptionally high frequencies were technology, research, and development, which reflected the characteristics of news articles that report new findings. On the other hand, terms used more than once per two articles were industry-related terms (industry, product, system, production, market) and terms that were sufficiently expected as energy-related terms such as 'electricity' and 'environment.' Meanwhile, 'sun', 'heat', 'temperature', and 'power generation', which are frequently used in energy-related science classes, also appeared as terms belonging to the highest frequency. From a network analysis, two clusters were found including terms related to industry and technology and terms related to basic science and research. From the analysis of terms paired with energy, it was also found that terms related to the use of energy such as 'energy efficiency,' 'energy saving,' and 'energy consumption' were the most frequently used. Out of 16 topics found, four contexts of energy were drawn including 'high-tech industry,' 'industry,' 'basic science,' and 'environment and health.' The results suggest that the introduction of the concept of energy degradation as a starting point for energy classes can be effective. It also shows the need to introduce high-tech industries or the context of environment and health into energy learning.