• Title/Summary/Keyword: Modeling Aerodynamic Coefficient

Search Result 20, Processing Time 0.024 seconds

A Study on the Modeling Method of Missile Fin Aerodynamic Coefficient using Wind Tunnel Test and CFD (풍동시험과 CFD 해석 결과를 반영한 유도무기 조종날개 공력계수 모델링 기법 연구)

  • Yim, Kyung Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.360-368
    • /
    • 2019
  • A study on aerodynamic modeling was performed to predict the hinge moments required for initial design of missile. Fin aerodynamic coefficients were modeled using the equivalent angle of attack method based on the wind tunnel test. In addition, CFD analysis was performed to calculate the dynamic pressure around the body and improve the accuracy of aerodynamic coefficients. The aerodynamic coefficient accuracy was verified by comparisons of the coefficient acquired from wind tunnel test and prediction of flow conditions, not involved in the model built-up. It was confirmed that fin aerodynamic coefficients can be predicted effectively by using the proposed method.

Optimization of Carr's Automotive Aerodynamic Underbody Drag Coefficient Using Genetic Algorithm (유전 알고리즘을 이용한 Carr의 차량 하체 공력계수 최적화)

  • Kim, Ki Hyuk;Lee, Tea Sup
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.518-520
    • /
    • 2015
  • Automotive aerodynamic drag coefficient is important variable for vehicle's driving performance and fuel economy. In this research, we applied genetic algorithm to determine the geometrical figure which can optimize Carr's automotive aerodynamic underbody coefficient. And it's verified by previous research.

  • PDF

System Identification of Aerodynamic Coefficients of F-16XL (ICCAS 2004)

  • Seo, In-Yong;Pearson, Allan E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.383-388
    • /
    • 2004
  • This paper presents the aerodynamic coefficient modeling with a new model structure explored by Least Squares using Modulating Function Technique (LS/MFT) for an F-16XL airplane using wind tunnel data supplied by NASA/LRC. A new model structure for aerodynamic coefficient was proposed, one that considered all possible combination terms of angle of attack ${\alpha}$(t) and ${\alpha}$(t) given number of harmonics K, and was compared with Pearson's model, which has the same number of parameters as the new model. Our new model harmonic results show better agreement with the physical data than Pearson's model. The number of harmonics in the model was extended to 6 and its parameters were estimated by LS/MFT. The model output of lift coefficient with K=6 correspond reasonably well with the physical data. In particular, the estimation performances of four aerodynamic coefficients were greatly improved at high frequency by considering all harmonics included in the input${\alpha}$(t), and by using the new model. In addition, the importance of each parameter in the model was analyzed by parameter reduction errors. Moreover, the estimation of three parameters, i.e., amplitude, phase and frequency, for a pure sinusoid and a finite sum of sinusoids- using LS/MFT is investigated.

  • PDF

A STUDY OF AERODYNAMIC MODELING FOR UNFOLDING WING MOTION ANALYSIS (전개하는 날개의 공력 모델링 연구)

  • Jung, S.Y.;Yoon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.245-250
    • /
    • 2008
  • For simulation of a wing unfolding motion for the various aerodynamic conditions, equation governing unfolding motion and moments applying to the unfolding wing were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with twisted wing, whose deflection angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to wing deployment test results.

  • PDF

A STUDY OF AERODYNAMIC MODELING FOR UNFOLDING WING MOTION ANALYSIS (전개하는 날개의 공력 모델링 연구)

  • Jung, S.Y.;Yoon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.245-250
    • /
    • 2008
  • For simulation of a wing unfolding motion for the various aerodynamic conditions, equation governing unfolding motion and moments applying to the unfolding wing were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with twisted wing, whose deflection angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to wing deployment test results.

  • PDF

New Parametric Affine Modeling and Control for Skid-to-Turn Missiles (STT(Skid-to-Turn)미사일의 매개변수화 어파인 모델링 및 제어)

  • Chwa, Dong-Kyoung;Park, Jin-Young;Kim, Jinho;Song, Chan-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.727-731
    • /
    • 2000
  • This paper presents a new practical autopilot design approach to acceleration control for tail-controlled STT(Skid-to-Turn) missiles. The approach is novel in that the proposed parametric affine missile model adopts acceleration as th controlled output and considers the couplings between the forces as well as the moments and control fin deflections. The aerodynamic coefficients in the proposed model are expressed in a closed form with fittable parameters over the whole operating range. The parameters are fitted from aerodynamic coefficient look-up tables by the function approximation technique which is based on the combination of local parametric models through curve fitting using the corresponding influence functions. In this paper in order to employ the results of parametric affine modeling in the autopilot controller design we derived a parametric affine missile model and designed a feedback linearizing controller for the obtained model. Stability analysis for the overall closed loop sys-tem is provided considering the uncertainties arising from approximation errors. the validity of the proposed modeling and control approach is demonstrated through simulations for an STT missile.

  • PDF

On the Effect of Air-Simulated Side-Jets on the Aerodynamic Characteristics of a Missile by Multi-Fidelity Modeling (다충실도 모형화를 통한 공기로 모사된 측방제트가 유도무기의 공력특성에 미치는 영향 연구)

  • Kang, Shinseong;Kang, Dayoung;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.95-106
    • /
    • 2021
  • Side-jets enable the immediate maneuver of a missile compared to control surfaces; however, they may cause adverse effects on aerodynamic coefficients, for they interfere with freestream. To find out the impact of side-jets on aerodynamic coefficients, we simulate side-jets as air gas and utilize multi-fidelity models to evaluate differences between aerodynamic coefficients obtained with and without side-jets. We computed differences in aerodynamic coefficients to investigate side-jet effects for the changes of a Mach number, a bank angle, and an angle of attack. As a result, asymmetrically developed side-jets affect the longitudinal force and moment coefficients, and the lateral force and moment coefficients drastically change in-between -30 and 30 degrees of bank angles. In contrast, side-jets hardly influence the axial force coefficients. As for the axial moment coefficient, we could not determine the side-jet effect due to a lack of aerodynamic coefficient samples in the Mach number. All in all, we confirm that side-jets lead to the change of a missile attitude as they considerably vary the longitudinal and lateral aerodynamic coefficients.

Aerodynamic Shape Design Method for Wing Planform Using Metamodel (근사모델을 이용한 날개 평면형상 공력형상설계 방법)

  • Bae, Hyogil;Jeong, Sora
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.18-23
    • /
    • 2014
  • In preliminary design phase, the wing geometry of the civil aircraft was determined using the empirical equation and historical data. To make wing geometry more aerodynamically efficient, an aerodynamic shape optimization was conducted. For this purpose the parametric modeling, high fidelity CFD analysis and metamodel-based optimal design technique were adopted. The parametric modeling got the design process to achieve the improvement by generating the configuration outputs easily for the major design variables. The optimal design equations were formularized as the type of the multi-objective functions considering low/high speed and lift/drag coefficient. The optimal solution was explored with the help of the kriging metamodel and the desirability function, therefore the optimal wing planform was sought to be excellent at both low and high speed region. Additionally the optimal wing planform was validated that it was excellent not only at the specific AOA, but also all over the range of AOA.

Application of Gradient-Enhanced Kriging to Aerodynamic Coefficients Modeling With Physical Gradient Information (물리적 구배 정보를 이용한 공력계수 모형화를 위한 GE 크리깅의 적용)

  • Kang, Shinseong;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • The six-DOF aerodynamic coefficients of a missile entail inherent physical gradient constraints originated from the geometric characteristics of a cylindrical fuselage. To effectively adopt the freely available gradient information in aerodynamic coefficients modeling, this research employed gradient-enhanced (GE) Gaussian process. To investigate the accuracy of aerodynamic coefficients predicted with gradients information, we compared two Gaussian-process-based models: ordinary and GE Gaussian process models with and without gradient information, respectively. As a result, we found that GE Gaussian process models were able to comply with imposed gradient information and more accurate than ordinary Gaussian process models. However, we also found that GE Gaussian process modeling cannot handle gradient information continuously and ends up with more samples due to additional gradient information.

Investigation of Aerodynamic Characteristics of a Medium-Size Vehicle (중형 차량의 외부 유동특성에 관한 연구)

  • Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.22-28
    • /
    • 2006
  • Computer simulation of the air flow over an automotive vehicle is now becoming a routine process in automotive industry to assess the aerodynamic characteristics of a medium-size vehicle such as $C_d\;and\;C_1$ and aslo to investigate the possibility of improving aerodynamic performance of the vehicle as a preliminary design for the production line. Mainly due to its contribution in saving time and cost in the development of new cars, computer simulation of the air flow over a vehicle is usually done well before a production car is introduced to the market and in gaining more and more attention as powerful computer resources are getting readily available nowadays. To aerodynamically design a car is mainly related with reducing a drag coefficient of car. A well designed car usually has a $C_d$ value in the range of $0.3{\sim}0.4$. It is understandable that automotive industry is rushing to reduce a drag coefficient as reducing even a small fraction of the $C_d$ value can have an enormous overall impact on many areas. Actually, the present research model was able to achieve a $C_d$ value in the range of $0.3{\sim}0.36$ for flow velocities of $60km/h{\sim}100km/h$ by strategically removing the possible factor hazardous to lower $C_d$ value. Prediction of the medium-size vehicle aerodynamics using CFD was performed when an actual car model was in the development stage and three-dimensional modeling was also performed to optimize it as the best model in terms of the best aerodynamic performance.

  • PDF