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1. INTRODUCTION

This paper concerns parameter estimation for
aerodynamic modeling under unsteady flow effects motivated 
by early work of Tobak and coworkers [1,2], and continued by 
Klein and Murphy [3]; therein are described integro-
differential equation models (including the following) which 

link the angle of attack and pitch rate variables, )(tα  and 

)(tq  respectively, to a generic aerodynamic coefficient

)(tCa :
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where ))(),(;( tqtCa α∞ is the total aerodynamic coefficient 

that would correspond to steady flow with α  and q  fixed 

at the instantaneous values )(tα  and )(tq , and the kernel 

functions (
qaa FF ,

α
), which are called deficiency functions, 

account for the dynamic effects of transient variables ( q,α ).

In wind-tunnel testing, the q  effect cannot be separated from 

that of )(tα& . Since we are analyzing wind-tunnel data, )(tα&
will be used instead of q  in the following investigation. 

Thus,

)()( ttq α&= (2)

corresponding to which the model (1) reverts to
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Equation (3) will be investigated in this report with respect 

to parameterizations of the kernel functions ),(
qaa FF

α
 and 

the static term ))(;( tCa α∞  that facilitate a linear least 

squares estimation of the parameters given oscillatory data for 

)(tα  and )(tCa . Physical data for the modeling was taken in 

NASA LaRC’ s 12-Foot Low-Speed Tunnel for the F-16XL 10 

percent scale model. Large amplitude )35( o  forced 

oscillatory data were sampled at 100 and 40 Hz for forcing 
periods T={1.0, 1.33, 1.72, 2.38, 4.0} sec and T=12.0 sec 

respectively. Characteristic length to velocity is Vl / =0.0213

sec, where V is airspeed in sec/m  and characteristic length 

l  is the half wing mean aerodynamic chord ( )2/cl = . The 

basic set of oscillatory data was obtained at 6 frequencies, one 

mean value of the angle of attack 0α , and an amplitude, 

o35|| =a . Following a frequency analysis of a portion of the 

data in Section 2, estimation of two different kinds of
sinusoidal signals using LS/MFT is explored in Section 3. One 
specific parameterization is presented in Section 4. Algorithms 
for parameter estimation are given in Section 5, comparison of 
the resulting model outputs based on the analyzed data are 
given in Section 6, prior to the concluding section, Section 7.

2. DATA ANALYSIS

The physical data consists of wind tunnel measurements 
of various aerodynamic coefficients corresponding to

sinusoidal motions in the angle of attack )(tα  at a specified 

set of frequencies as given by the inverses to six periods: 

}0.12,0.4,38.2,72.1,33.1,0.1{=T seconds which corresponds to 

nondimensionalized reduced frequency k = {0.1338, 0.1006,
0.0778, 0.0562, 0.0335, 0.0112} respectively. Each sinusoid 

possesses a nominal value )(DC of 35° and an amplitude of 

35°: )cos(3535)( tt ωα += , (in degrees)

Time histories of )(tα  and one aerodynamic coefficient, lift 

coefficient )(tCL , are shown in Fig. 1 which indicates that 

several periods of the oscillatory data are given at one input 

frequency T = 1.0 sec. Although the data appears to be nearly 
perfectly periodic, close examination reveals some anomalies. 
In particular, there is a short transient interval in the output 
lasting several seconds for each of the input frequencies, and 

the time history  for )(tα  shows a slightly variable amplitude 

and frequency or phase in the T=1.0 case.
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Fig. 1 )(tα  and LC  for T=1.0 sec 

Since the data is oscillatory, it is of interest to learn the extent 
to which it can be represented by a finite Fourier series, using 
as a fundamental frequency the inverse of the specified period 

T  in each case. As is well known, if )(tf  is a T -periodic

function that is representable by a finite Fourier series of K

harmonics, then the following equality holds for all t :
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where the Fourier coefficients ][kF  are specified by
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Assuming the sampling rate exceeds the Nyquist rate for the 

signal )(tf , the coefficients ][kF  can be computed using 

the discrete Fourier transform which can be calculated by a 
standard FFT algorithm applied to the sampled data. Thus, if 

jf  denotes samples of the continuous-time signal )(tf  at 

,/0 NjTt += Nj ,...,1,0= , then the Euler approximation 

for the right side of (5) yields
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By computing the Fourier coefficients from (6), and
reconstructing the data with (4) for the given oscillatory data, 
the answer can be approached as to the question of what value 
to assign the integer K.
The angle of attack motion is assumed to be a pure sinusoid, 

and )(tα and )(tα& can be reconstructed with Fourier

coefficients as follows:

])1[cos(]1[2)( 0 FtFt ∠++= ωαα , (7)

])1[sin(]1[2)( FtFt ∠+−= ωωα& (8)

If )(tα  includes K harmonics like for T=1.00 sec case, 

)(tα and )(tα&  can be obtained as follows using Fourier 

series;
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3. ESTIMATION OF INPUT )(tα

3.1  Estimation of pure sinusoids.

Let’ s assume we don’ t know the DC value, the amplitude, 

and the frequency (period) ),,( 0 ωα a  of input )(tα , which 

has only a fundamental frequency, and want to identify the 

parameters comprising )(tα :
titi eaaet ωωαα −++= *)( 0 (11)

The following identity holds for )(tα :

0)()(
22 =+ tpp αω (12)

)()( 23 tptp αωα −=  and let )()( tty α=
23 )()( ωθθ −== wheretpytyp

Convert this equation to the frequency domain using order 3 

modulation functions and estimate θω −=2 .

Following this estimation, let )ˆcos(||2)( 0 atat ∠++= ωαα .

After we expand the cosine term, we get 
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Now, we can estimate )ˆ,ˆ,ˆ( 0 BAα  using least squares

estimation and from this, we can compute 

A
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Finally,
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3.2 Estimation of Finite Sum of Sinusoids using LS /MFT

Periodic )(ty  with finite sum of sinusoids can be 

expressed as follows: Explicitly,
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where ,/2 kk Tπω =  or implicitly,
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Again we take 
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p  out from all parentheses, then 
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Now use Bruzzone and Kaveh’ s rule [6] to expand the above 
equation
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Again, arrange (18) as following
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where NN aaa === θθθ ,,, 2211 L

Apply 12 +N  order MFT and transform it to the Frequency 

domain, and estimate 1θ  through Nθ . We have N unknowns 

and N equations for ω  so we can calculate Nωωω ,,, 21 L .

Substitute these ω ’ s into equation (16) and expand cos terms 
again.

)ˆsinˆcos()(
1
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 where
kkkkkk HBandHA ϕϕ sin,cos ==

FFut θα ′=)( (22)

where ]ˆ,ˆ,,ˆ,ˆ,ˆ,ˆ,ˆ[ 22110 NNF BABABA Lαθ =  and

]sin,cos,,sin,cos,sin,cos,1[ 2211 ttttttu NNF ωωωωωω −−−= L

Using the LS/MFT, we can estimate ,,ˆ,ˆ,ˆ,ˆ,ˆ
22110
LBABAα

N
Â

and
N

B̂ . From these estimated parameters, we can calculate 

'θ ’ s and H ’s.
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Reconstructed input )(tα  with estimated parameters is 
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4. MODEL PARAMETERIZATIONS

Since K products of steady state linear operations on a 
sinusoid can produce K  harmonics of the fundamental
frequency, it is natural to seek explanations for the data of 
Section 2 using such products. Although many structures can 
be envisaged, the following specification reflects this notion 
and is consistent with the modeling discussed in Klein and 
Murphy as well as with the general Tobak model: The kernel 

functions ),(
qaa FF

α
 are assumed to satisfy separability-type

conditions;

),()(),()(),;( qPthandqPthqtF qqa ααα ααα
= (25)

where ),(),,( qPqP q ααα  are polynomial functions of their

arguments, and ))(),(( thth qα  are functions with rational 

Laplace transfer functions. Combining this with the single 
degree of freedom constraint (2) facilitates the following
input/output operator representation for (3).

( ) )()()()( 0 tzpHturty +′= α (26)

where ( ))(),()(,/ ttgtzdtdp αα &==
Here prime denotes vector transpose, )()( tCty a=  represents 

the scalar-valued output, the ( ))(0 tur α′  term is for the

compensation of DC value in the output, ( ))(),()( ttgtz αα &=
is a column vector-valued forcing function to be structured in a 
way that  contributes to the K harmonics observed in the output 

during oscillatory operation. ( ))(0 tur α′ represents

parameterized effects of the static term ( ))(; tCa α∞  in (3) 

with 0r ′  comprising a 1+K  row vector of parameters, and 

the K+1 dimensional column vector function ( ))(tu α  is 

defined by

],,,,1[)(
2 ′= K

u αααα L (27)

)(sH  is a row vector-valued rational transfer function in the 

Laplace variable s  which will be parameterized to facilitate 
a linear least squares for the model.

4.2  Parameterizing H(s)
From the previous work [7], we found that the noncausal 

model provides a better fit to the LC  data than a causal

model. Representing a noncausal system from input to output, 
an improper rational transfer function of user-specified order n,
endowed with appropriate parameterization for a linear least 
squares estimation, is defined as follows [7] 
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The model order n was chosen to be zero and it showed good 

performance. The parameter vector 1b  is separated into two 

subvectors, 1r  and 2r , Thus, ),()( 211 rrbsHNC ′′=′=
In general, the proposed model with K harmonics can be 
expressed as follows;
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Hence, a total of ∑
=

+−++
K

k

kK
1

}1)2{(21  parameters are needed 

to define the input/output model (29) for this structure, using 
the causal transfer function of order zero. This model is for a 

special case of a causal system when 0=n .

5. LEAST SQUARES FORMULATIONS

Using the parameterized transfer functions of the
previous section, the input/output model (26) can be
equivalently expressed as an equation error in differential 
operator format with the unknown parameters appearing
linearly as coefficients. But, in the case of the special 
noncausal transfer function (29):
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where [ ]K
u αααα ,,,,1)( 2

L=′ , [ ]Kv αααα &L&&& ,,,)( 2=′ ,

[ ]1221322 ,,,,,,,,),( −−−=′ KKK
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Equation (30) is now in a form for direct application of the 
Fourier-based modulating function technique (MFT)

developed in [5]. Order 0=n  modulating functions are used 
to convert (30) to the frequency domain, given the functions 

( ) ( ) ( )[ ])(,)(),(,)(,)( tyttwtvtu αααα &&  on some interval ],[ 10 tt .

But in the general 0≠n  case, whether that data is transient 
or in steady state makes no difference since the MFT method 
obviates dealing with unknown or unspecified initial/boundary 
conditions for time-limited data. Although the output function 

)(ty  is given directly from the oscillatory data, the vector 

functions ( ) ( ) ( )( ))(),(,)(,)( ttwtvtu αααα &&  have to be computed

separately given the angle of attack variable )(tα . This can 
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be done either directly from the defining equations (27) or 

indirectly using a Fourier representation for )(tα .

After conversion of (30) to the frequency domain via the MFT 
technique and transferring the output to the left side, a
complex valued equation results which is of the form

.,,1,0, MmcYc mm L=Γ′=′ θ (31)

Here θ  denotes the composite column vector of parameters

comprised of the vectors jr , and c′ is a row vector of 

binomial coefficients, each defined as follows:
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The ),( mmY Γ  denote a vector/matrix pair constructed from 

the Fourier coefficients of the data in the following way:
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where ][kY  denotes thk harmonic Fourier coefficient on the 

data variable )(ty  relative to an arbitrary data-length time 

interval ],0[ 0T , i.e.,
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and ][kΓ  is the thk harmonic Fourier coefficient of a row 

vector function )(tΓ  stemming from the data pair

( ))(),(()),(()),(( ttwtvtu αααα &&  which is defined as follows:

( ) ( ) ( )[ ] ],0[,)(),(,)(,)()( 0Ttttwtvtut ∈′′′=Γ αααα && (35)

and ][kΓ  is a row vector of frequency-modulated Fourier 

coefficients of the data variables [ )),(()),(( tvtu αα &

]))(),(( ttw αα &  relative to ],0[ 0T   which is constructed as

follows:
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A real-valued “measurement equation” for least squares
estimation can then be formed from (31), viz.

θΦ=Ζ (37)
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Equation (37) pertains to a single data pair ))(),(( tCt aα ,

which to reiterate need not be in the steady state insofar as the 
least squares estimation via the MFT technique is concerned. 

In order to perform the least squares estimation of θ  over 

several such data pairs, let a generic )(tα  be represented in 

complex format 
titi eaaet ωωαα −++= *)( 0

and let the triplet

),,( 0 ωαξ a= (39)

be used to characterize a particular sinusoid )(tα . Then all 

such data pairs can be enumerated by the L triplets

.,,2,1, Lll L=ξ  In the present study only frequency

distinguishes the various data pairs, for L=6 pairs
corresponding to the six T- values: T={1.0, 1.33, 1.72, 2.38, 
4.0, 12.0} seconds.  However, the complex valued amplitude 

a  as well as the DC value 0α  could in other situations be 

the quantities that initiate various data pairs. Thus, for each 
such pair it is obtained from (37) that 

LlZ ll ,,2,1, L=Φ′= θ (40)

which essentially define the regressand and the regressors

for this problem. Hence, the normal equation for estimating 

θ  is 
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and the LSE, assuming linearly independent regressors, is
given by 
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6. MODELING RESULTS

The entire six data sets for lift coefficient were not used 
for the estimation of the coefficients. By using only a part of 
the data sets for each coefficient, for instance L=3, we found a 
combined model using equation (42), and then utilized the 
remaining data sets for model verification. In addition, the 
entire data points for each frequency were not used for the 
parameter estimation of the aerodynamic coefficients model. 
By using only a part of the data points for each frequency, we 
were able to get better performance. In other words, the
numbers of the data points used for the identification of an 
individual model before we combine several frequencies, are 
256 I/O data for T={1.0, 1.33, 1.72} sec, 512 I/O data for 
T={2.38} sec, 1024 I/O data for T={4.0, 12.0} sec, and the 
corresponding resolving frequencies are 0.392, 0.1957, 0.098, 
and 0.039 Hz, respectively. The highest modulating indices M

that are used are {40, 25, 50, 41, 51, 42} for T={1.0, 1.33, 1.72, 
2.38, 4.0, 12.0} sec, respectively, which give the best
estimation performance for each individual model. Simulation 
procedures for the real data model estimation are as follows;

1. take one observation interval ( 0T ) after the transient state.

2. reconstruct )(tα  with equation (7) and (9) using Fourier 

coefficients.

3. construct )(tα&  using )(tα  obtained in step 2. 

4. construct ))(( tu α , ( ))(tv α& , and ( ))(),( ttw αα &  using 

)(tα  and )(tα& .

5. estimate parameters 0r , 1r , and 2r  using LS/MFT in (42)

6. Reconstruct model output using estimated parameters ( 0r ,

1r , 2r ) and input, [ ))(( tu α , ( ))(tv α& , ( )])(),( ttw αα & .

Since the actual sample interval is not even, the true )(tα&
cannot be generated by the numerical method. Thus, model 
error is inevitable. Only for T=1.0 sec, three harmonics, K=3,

were used for )(tα  and )(tα&  in equation (9) and (10). For 

other data sets of angle of attack, only the fundamental 
frequency was used. 
   First of all, we will compare our model results with
Pearson’ s model in [7]. Model I represents Pearson’ s model, 
and Model II in Table 1, our model proposed in this study. 
Model I has 15 parameters with the following form;
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Model II is a new structure with same number of parameters, 
15 parameters, but includes 4th harmonics with the following 
form;
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Note that both models have the same number of parameters. 
The combined models for the lift coefficient of Model I and 
Model II in Table 1 were built based on three input/output data 

pairs corresponding to: }0.4,33.1,00.1{∈T sec. This

combination was found to produce the highest average output 
SER, among all other combinations of three data pairs, within 
the entire data set available. Adapting Model II, which has the 
same number of parameters as Model I, we can obtain a higher 
average model output SER of 4 aerodynamic coefficients than 
in Model I. Moreover, there is an advantage in that we can 
expand K, so that we can get better results.

Model Output SER (dB)
for different frequency (T sec)

Model AVG
SER
(dB) T=

1.0
T=

1.33
T=

1.72
T=

2.38
T=
4.0

T=
12.0

I 19.3 19.8 21.2 21.2 19.6 17.8 16.3

II 21.9 20.3 23.0 21.8 24.3 23.7 18.2

Table 1  Comparison of LC model output SER(dB)

Fig. 2 shows the mean output SER and standard deviation 
(STD) of combined Model II for several K’s, K=4,5 and 6, of 

the lift coefficients. In Fig. 2 LC , DC , mC , NC represent

lift coefficient, drag coefficient, pitching moment coefficient
and normal force coefficient, respectively. As K increases in 
model II, the model produces better results but it needs more 
parameters. Whenever K is increased by 1, K+1 more
parameters are needed. 

Fig. 2  Output SER and STD versus K

When K=6, the Model II has 28 parameters, and they are 
shown in the following;
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where [ ]62

6
,,,,1)( αααα L=′u , [ ]62

6
,,,)( αααα &L&&& =′v ,

[ ]5245322

6 ,,,,,,,,),( αααααααααααααααα &L&&L&&&&& =′w

Although the model combined with five frequencies produces 
the best performance, only one data set is available for model 
verification, since six sets of data corresponding to 6 different 
frequencies are available (see Seo’s Ph.D thesis [8]). Thus, we 
used three frequencies as input data to estimate the parameters 
for the combined model with 6 harmonics, and verified the 
model with the other three frequencies data sets. 
Table 2 shows the estimated parameters for the lift coefficient
with a model in (45) of K=6. Three frequencies were

combined: ∈T {1.0, 1.72, 4.0} for LC  because these 

combinations produce the best performances.
The lift coefficient obtained from the aerodynamic model in
(45) is compared with the original test data in Fig. 3 and is 
found to agree well with the physical data. To verify the 
aerodynamic model, the data sets not involved in the training 
set were applied to the model. Compared with the model in [7], 
our models show greatly improved performances, especially at 
low and high frequency case, T=1.0 and T=12.0 sec.

DC α 2α 3α 4α 5α 6α
0.0226 2.6058 2.1746 -12.152 16.271 -11.530 3.4392

α& 2α& 3α& 4α& 5α& 6α& αα &

-0.0228 -0.0365 0.0096 0.0070 -0.0003 -0.0004 -0.0665

αα &2 2αα & αα &3 22αα & 3αα & αα &4 23αα &

2.6957 -0.2818 -1.3004 0.3997 -0.0664 -2.5240 0.1900

32αα & 4αα & αα &5 24αα & 33αα & 42αα & 5αα &

-0.1773 0.0157 1.5303 -0.1889 0.1705 -0.0251 0.0050

Table 2  Estimated parameters for the lift coefficient

Some estimated parameters in Table 2, say the ones for 
5α&  and 6α&  terms, are very small. Can we zero these small 

parameters out? To answer this question, we tested the
importance of each parameter using the Parameter Reduction 
Error (PRE). We investigated the effect of each term in the
model by computing output SER of lift  coefficient after we 
deleted term after term from the 3 frequencies combined 
model with K=6 in (45). PRE is defined as follows: 

PRE %100×
−

=
f

rf

SER

SERSER
(46)

where fSER  is an output SER with full parameters and 

rSER  is the output SER with 1 less parameter which is shown 

in the last column of Table 3. Table 3 shows the PRE for lift 
coefficient in percentages, (PRE for other parameters are not 
shown because of considerations of length, see [8]).
Z.T in Table 3 stands for zeroed term.
Some observations on the PRE in Table 3 are discussed below;
1. Negative (-) numbers in the table means that the specific 
term in the rightmost column affects the specific frequency of 
the aerodynamic coefficient negatively, i.e., if this term were 
not included in the model, then the output SNR of the
frequency would increase.
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PRE (%) for Lift Coeff.

T=1.0
sec

1.33
sec

1.72
sec

2.38
sec

4.00
sec

12.0
sec

Z.T

37.67 -10.08 -1.15 1.28 0.01 -0.00 5α&1r

93.99 27.91 9.44 0.82 -0.02 -0.00 6α&

Table 3  Parameter Reduction Error (%) for LC

2. Zeros in the table mean that the specific term in the 
rightmost column does not affect the specific frequency of the 
aerodynamic coefficient at all, i.e., even though this term is not 
included in the model, the output SNR of the frequency will 
not change.
3. The bigger the number the greater the importance of the 
term for the coefficient.

4. The 1r  parameters for the column ),( 65 αα &&  in the table 

are unnecessary in the low frequency data for lift  coefficient, 
but they are important in the high frequency data. Thus, these 
parameters get more important with increased frequency.
5. Although some estimated parameters are very small on the 

order of 310 − , they can not be zeroed out without
significantly decreasing the output SER in some frequency 
data.
6. To eliminate 1 parameter from the full model in equation 
(45), the PER for all frequencies should be around zero.
7. Some parameters are unnecessary for the low frequency 
data but become necessary in the high frequency data. This 
fact explains why we can’ t get a good combined model which
fits well over all frequencies.

7. CONCLUDING REMARKS

A new model structure for aerodynamic coefficient was
proposed, one that considered all possible combination terms 

of )(tα  and )(tα&  given K, and was compared with

Pearson’ s model [7], which has the same number of
parameters as the new model. Our new model harmonic results 
show better agreement with the physical data than Pearson’ s 
model. The number of harmonics in the model was extended 
to 6 and its parameters were estimated by LS/MFT. The model 
output of lift coefficient with K=6 correspond reasonably well 
with the physical data. In particular, the estimation
performances of lift aerodynamic coefficient was greatly
improved at high frequency by considering all harmonics

included in the input )(tα , and by using the new model. In 

addition, the importance of each parameter in the model was 
analyzed by parameter reduction errors. Moreover, the
estimation of three parameters, i.e., amplitude, phase and
frequency, for a pure sinusoid and a finite sum of sinusoids 
using LS/MFT is investigated, which could result in more 
improved performance by the AWLS.

Fig. 3 Model output of lift coefficient 
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