DOI QR코드

DOI QR Code

On the Effect of Air-Simulated Side-Jets on the Aerodynamic Characteristics of a Missile by Multi-Fidelity Modeling

다충실도 모형화를 통한 공기로 모사된 측방제트가 유도무기의 공력특성에 미치는 영향 연구

  • Kang, Shinseong (Department of Aerospace Engineering, Pusan National University) ;
  • Kang, Dayoung (Department of Aerospace Engineering, Pusan National University) ;
  • Lee, Kyunghoon (Department of Aerospace Engineering, Pusan National University)
  • Received : 2020.09.24
  • Accepted : 2021.01.10
  • Published : 2021.02.01

Abstract

Side-jets enable the immediate maneuver of a missile compared to control surfaces; however, they may cause adverse effects on aerodynamic coefficients, for they interfere with freestream. To find out the impact of side-jets on aerodynamic coefficients, we simulate side-jets as air gas and utilize multi-fidelity models to evaluate differences between aerodynamic coefficients obtained with and without side-jets. We computed differences in aerodynamic coefficients to investigate side-jet effects for the changes of a Mach number, a bank angle, and an angle of attack. As a result, asymmetrically developed side-jets affect the longitudinal force and moment coefficients, and the lateral force and moment coefficients drastically change in-between -30 and 30 degrees of bank angles. In contrast, side-jets hardly influence the axial force coefficients. As for the axial moment coefficient, we could not determine the side-jet effect due to a lack of aerodynamic coefficient samples in the Mach number. All in all, we confirm that side-jets lead to the change of a missile attitude as they considerably vary the longitudinal and lateral aerodynamic coefficients.

측방제트는 조종면에 비해 즉각적인 유도무기 기동이 가능하지만 자유류를 간섭하여 공력계수에 영향을 줄 수 있다. 공력계수에 대한 측방제트의 영향을 파악하기 위해 측방제트를 공기로 모사한 후 측방제트 유무에 따른 공력계수 차이를 다충실도 모형을 사용하여 살펴본다. 측방제트 유무에 따라 공력계수 예측 모형으로 추정된 공력계수 간 차이를 계산하여 측방제트의 영향을 마하수, 뱅크각, 받음각의 변화에 따라 조사한다. 분석 결과, 종방향 힘 및 모멘트 계수는 비대칭적으로 발달한 측방제트에 큰 영향을 받았으며, 횡방향 힘 및 모멘트 계수는 -30°와 +30° 사이 뱅크각에서 최대로 변동하였다. 이에 반해 축방향 힘 계수는 측방제트에 영향을 받지 않았으며, 축방향 모멘트 계수는 마하수 변화에 대한 표본 부족으로 측방제트의 영향을 판단하기 어려웠다. 종합하면 측방제트가 종방향 및 횡방향 공력계수에 주요한 영향을 주어 유도무기 자세 변화를 일으킨다는 것을 확인하였다.

Keywords

Acknowledgement

본 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었습니다.

References

  1. Srivastava, B., "Lateral Jet Control of a Supersonic Missile: Computational and Experimental Comparisons," Journal of spacecraft and rockets, Vol. 35, No. 2, 1998, pp. 140-146. https://doi.org/10.2514/2.3321
  2. Beresh, S. J., Henfling, J. F., Erven, R. J. and Spillers, R. W., "Crossplane Velocimetry of a Transverse Supersonic Jet in a Transonic Crossflow," AIAA Journal, Vol. 44, No. 12, 2006, pp. 3051-3061. https://doi.org/10.2514/1.22311
  3. Kovar, A. and Schulein, E., Effect of Side Jets in a Supersonic Flow Measured and Calculated on a Flat Plate and a Generic Missile Configuration, German Aerospace Center Gottingen, Germany, 2006, pp. 37-1-14.
  4. Min, B. Y., Lee, J. W. and Byun, Y. H., "Numerical Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile," Aerospace Science and Technology, Vol. 10, No. 5, 2006, pp. 385-393. https://doi.org/10.1016/j.ast.2005.11.013
  5. Kang, K. T., Lee, E. and Lee, S., "Numerical Investigation of Jet Interaction for Missile with Continuous Type Side Jet Thruster," International Journal of Aeronautical and Space Sciences, Vol. 16, No. 2, 2015, pp. 148-156. https://doi.org/10.5139/IJASS.2015.16.2.148
  6. Han, M. S., Myong, R. S., Cho, T. H., Hwang, J. S. and Park, C. H., "Analysis of the Aerodynamic Characteristics of Missile Configurations Using a Semi-Empirical Method," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 33, No. 3, 2005, pp. 26-31. https://doi.org/10.5139/JKSAS.2005.33.3.026
  7. El-Mahdy, L. A., Ahmed, M. Y., Mahmoud, O. K. and Abdel-Hameed, O. E., "A Comparative Study of Prediction Techniques for Supersonic Missile Aerodynamic Coefficients," Journal of Mechanical Engineering, Vol. 14, No. 1, 2017, pp. 35-60.
  8. Stahl, B., Emunds, H. and Gulhan, A., "Experimental Investigation of Hot and Cold Side Jet Interaction with a Supersonic Cross-Flow," Aerospace Science and Technology, Vol. 13, No. 8, 2009, pp. 488-496. https://doi.org/10.1016/j.ast.2009.08.002
  9. Go, B. Y. and Hur, K. H., "A Study on the Effects of Side Jets to the Longitudinal Aerodynamics of Subsonic Missile," Journal of the Korea Institute of Military Science and Technology, Vol. 20, No. 3, 2017, pp. 393-404. https://doi.org/10.9766/KIMST.2017.20.3.393
  10. Chamberlain, R., McClure, D. and Dang, A. "CFD Analysis of Lateral Jet Interaction Phenomena for the THAAD Interceptor," In 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, U.S.A., 2000, pp. 00-0963-1-8.
  11. Sourgen, F., Gauthier, T., Leopold, F. and Sauerwein, B., "Substitution of Hot-Gas Lateral Jets by Cold-Gas Jets in Supersonic Flows," Journal of Spacecraft and Rockets, Vol. 45, No. 1, 2011, pp. 81-92.
  12. DeSpirito, J., "Turbulence Model Effects on Cold-Gas Lateral Jet Interaction in a Supersonic Crossflow," Journal of Spacecraft and Rockets, Vol. 52, No. 3, 2015, pp. 836-852. https://doi.org/10.2514/1.A32974
  13. Kang, K. T. and Lee, S., "Modeling and Assessment of Jet Interaction Database for Continuous-Type Side Jet," Journal of Spacecraft and Rockets, Vol. 54, No. 4, 2017, pp. 916-929. https://doi.org/10.2514/1.a33807
  14. Vanderwyst, A., Shelton, A. and Martin, C. L., "A Computationally Efficient, Multi-Fidelity Assessment of Jet Interactions for Highly Maneuverable Missiles," 34th AIAA Applied Aerodynamics Conference, Washington, D.C., USA, 2016, pp. 2016-4333-1-11.
  15. Forrester, A., Sobester, A. and Keane, A., Engineering Design via Surrogate Modelling: A Practical Guide, John Wiley & Sons, Chichester, UK, 2008, pp. 49-63.
  16. Kennedy, M. C. and O'Hagan, A., "Predicting the Output from a Complex Computer Code When Fast Approximations Are Available," Biometrika, Vol. 87, No. 1, 2000, pp. 1-13. https://doi.org/10.1093/biomet/87.1.1
  17. Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P., "Design and Analysis of Computer Experiments," Statistical Science, Vol. 4, No. 4, 1989, pp. 409-423. https://doi.org/10.1214/ss/1177012413
  18. Toal, D. J. J., Bressloff, N. W. and Keane, A. J., "Kriging Hyperparameter Tuning Strategies," AIAA Journal, Vol. 46, No. 5, 2008, pp. 1240-1252. https://doi.org/10.2514/1.34822
  19. Kang, S. and Lee. K., "Rapid Estimation of the Aerodynamic Coefficients of a Missile via Co-Kriging," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 48, No. 1, 2020, pp. 13-21. https://doi.org/10.5139/JKSAS.2020.48.1.13
  20. Khelil, S. B., Guillen, P., Lazareff, M. and Lacau, R. G., "Numerical Simulation of Roll Induced Moment of Cruciform Tactical Missiles," Aerospace Science and Technology, Vol. 5, No. 2, 2001, pp. 109-124. https://doi.org/10.1016/S1270-9638(00)01091-9
  21. Gnemmi, P., Adeli, R. and Longo, J., "Computational Comparisons of the Interaction of a Lateral Jet on a Supersonic Generic Missile," In AIAA Atmospheric flight mechanics conference and exhibit, Honolulu, Hawaii, 2008, pp. 2008-6883-1-9.
  22. Pepitone, T. R. and Jacobson, I. D., "Resonant Behavior of a Symmetric Missile Having Roll Orientation-Dependent Aerodynamics," Journal of Guidance and Control, Vol. 1, No. 5, 1978, pp. 335-339. https://doi.org/10.2514/3.55789
  23. Jeong, D.-G., Park, J.-S., Lee, J.-H., Jun, D.-S. and Son, S.-H., "Study on Effects of Roll in Flight of a Precision Guided Missile for Subsystem Requirements Analysis," Journal of the Korea Society for Simulation, Vol. 28, No. 2, 2019, pp. 131-137. https://doi.org/10.9709/JKSS.2019.28.2.131