• 제목/요약/키워드: Model-predictive-control

검색결과 551건 처리시간 0.029초

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

Wavelet Neural Network Based Generalized Predictive Control of Chaotic Systems Using EKF Training Algorithm

  • Kim, Kyung-Ju;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2521-2525
    • /
    • 2005
  • In this paper, we presented a predictive control technique, which is based on wavelet neural network (WNN), for the control of chaotic systems whose precise mathematical models are not available. The WNN is motivated by both the multilayer feedforward neural network definition and wavelet decomposition. The wavelet theory improves the convergence of neural network. In order to design predictive controller effectively, the WNN is used as the predictor whose parameters are tuned by error between the output of actual plant and the output of WNN. Also the training method for the finding a good WNN model is the Extended Kalman algorithm which updates network parameters to converge to the reference signal during a few iterations. The benefit of EKF training method is that the WNN model can have better accuracy for the unknown plant. Finally, through computer simulations, we confirmed the performance of the proposed control method.

  • PDF

Receding horizon predictive controls and generalized predictive controls with their equivalance and stability

  • Kwon, Wook-Hyun;Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.49-55
    • /
    • 1992
  • In this paper, we developed a Receding Horizon Predictive Control for Stochastic state space models(RHPCS). RHPCS was designed to minimize a quadratic cost function. RHPCS consists of Receding Horizon Tracking Control(RHTC) and a state observer. It was shown that RHPCS is equivalent to Generalized Predictive Control(GPC) when the underlying state space model is equivalent to the I/O model used in the design of GPC. The equivalence between GPC and RHPCS was shown through. the comparison of the transfer functions of the two controllers. RHPCS provides a time-invarient optimal control law for systems for which GPC can not be used. The stability properties of RHPCS was derived. From the GPC's equivalence to RHPCS, the stability properties of GPC were shown to be the same as those for RHTC.

  • PDF

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계 (Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC))

  • 박효성;이영일
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.

Model predictive control strategies for protection of structures during earthquakes

  • Xu, Long-He;Li, Zhong-Xian
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.233-243
    • /
    • 2011
  • This paper presents a theoretical study of a model predictive control (MPC) strategy employed in semi-active control system with magnetorheological (MR) dampers to reduce the responses of seismically excited structures. The MPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an objective function, which can compensate for the effect of time delay that occurred in real application. As an example, a 5-story building frame equipped with two 20 kN MR dampers is presented to demonstrate the performance of the proposed MPC scheme for addressing time delay and reducing the structural responses under different earthquakes, in which the predictive length l = 5 and the delayed time step d = 10, 20, 40, 60, 100 are considered. Comparison with passive-off, passive-on, and linear quadratic Gaussian (LQG) control strategy indicates that MPC scheme exhibits good control performance similar to the LQG control strategy, both have better control effectiveness than two passive control methods for most cases, and the MPC scheme used in semi-active control system show more effectiveness and robustness for addressing time delay and protecting structures during earthquakes.

외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발 (Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes)

  • 오광석;서자호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.

CONTROL STRATEGY OF AN ACTIVE SUSPENSION FOR A HALF CAR MODEL WITH PREVIEW INFORMATION

  • CHO B.-K.;RYU G.;SONG S. J.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.243-249
    • /
    • 2005
  • To improve the ride comfort and handling characteristics of a vehicle, an active suspension which is controlled by external actuators can be used. An active suspension can control the vertical acceleration of a vehicle and the tire deflection to achieve the desired suspension goal. For this purpose, Model Predictive Control (MPC) scheme is applied with the assumption that the preview information of the oncoming road disturbance is available. The predictive control approach uses the output prediction to forecast the output over a time horizon and determines the future control over the horizon by minimizing the performance index. The developed method is applied to a half car model of four degrees-of-freedom and numerical simulations show that the MPC controller improves noticeably the ride qualities and handling performance of a vehicle.

비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어 (Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator)

  • 김준식;최유나;이동철;최영진
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

불확실 로봇 매니퓰레이터의 견실 예측 제어기 설계 (Robust Predictive Control of Robot Manipulators with Uncertainties)

  • 김정관;한명철
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.10-14
    • /
    • 2004
  • We present a predictive control algorithm combined with the robust robot control that is constructed on the Lyapunov min-max approach. Since the control design of a real manipulator system may often be made on the basis of the imperfect knowledge about the model, it is an important trend to design a robust control law that guarantees the desired properties of the manipulator under uncertain elements. In the preceding robust control work, we need to tune several control parameters in the admissible set where the desired stability can be achieved. By introducing an optimal predictive control technique in robust control we can find out much more deterministic controller for both the stability and the performance of manipulators. A new class of robust control combined with an optimal predictive control is constructed. We apply it to a simple type of 2-link robot manipulator and show that a desired performance can be achieved through the computer simulation.