• 제목/요약/키워드: Model-based systems engineering

검색결과 5,503건 처리시간 0.03초

UG/KF를 이용한 지능형 CAD 시스템의 지식 확장 및 지식 관리에 관한 연구 (A Study on an Extended Knowledge Model and a Management System of an Intelligent CAD System using UG/KF)

  • 배일주;이수홍;전흥재
    • 한국CDE학회논문집
    • /
    • 제10권1호
    • /
    • pp.49-60
    • /
    • 2005
  • Existing CAD systems have configured geometry data and it is necessary to extend the configured geometry into a knowledge-based system. An intelligent CAD system emerged to provide such a knowledge-based system. However the intelligent CAD system has a limited product model to represent various knowledge models. This paper presents a model, called extended intelligent CAD model, which can extend the product model of the intelligent CAD system into further detailed knowledge model. The extended intelligent CAD model includes a whole design process knowledge and an efficiency of the model has been verified via a knowledge based wiper design system. The model can improve the functionality and efficiency of the existing CAD systems.

Engineering Valuation Based on Small Samples

  • Cho, Jin-Hyung;Lee, Sae-Jae;Seo, Bo-Chul
    • 산업경영시스템학회지
    • /
    • 제29권1호
    • /
    • pp.143-150
    • /
    • 2006
  • Box-Cox model and T-factor method have been widely used to measure economic depreciations for industrial property. The Box-Cox model which combines economic efficiency with depreciation pattern is here extended to the reliability function. To do so a Rayleigh distribution which has been used to estimate the reliability of current assets was chosen as an efficiency curve of marginal productivity. Such an approach provides the possibility to classify the efficiency curves into four categories. It is also possible to analyze the types of depreciation curves. Therefore, the power family of a non-linear Box-Cox model could be set at certain constant values, then the model can be transformed into a linear model to estimate the economic depreciation rates by utilizing the reliability function. Estimating the resultant linear regression equation requires minimal number of observations, while at the same time facilitating the test of hypothesis on depreciation rates.

제약조건을 갖는 다변수 모델 예측제어기의 보일러 시스템 적용 (Multivariable constrained model-based predictive control with application to boiler systems)

  • 손원기;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.582-587
    • /
    • 1997
  • This paper deals with the control problem under nonlinear boiler systems with noise, and input constraints. MCMBPC(Multivariable Constrained Model-Based Predictive Controller) proposed by Wilkinson et al.[10,11] is used and nominal model is modified in this paper in order to applied to nonlinear boiler systems with feed-forward terms. The solution of the cost function optimization constrained on input and/or output variables is achieved using quadratic programming, via singular value decomposition(SVD). The controller designed is shown to satisfy the constraints and to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

특수 및 준특수 상세에 따른 철근콘크리트 전단벽의 내진성능평가 (Seismic Performance Evaluation of Reinforced Concrete Shear Wall Systems Designed with Special and Semi-Special Seismic Details)

  • 오해철;이기학;천영수;김태완
    • 한국지진공학회논문집
    • /
    • 제18권4호
    • /
    • pp.181-191
    • /
    • 2014
  • This research presents the nonlinear analysis model for reinforced concrete shear wall systems with special boundary elements as proposed by the Korean Building Code (KBC, 2009). In order to verify the analysis model, analytical results were compared with the experimental results obtained from previous studies. Established analytical model was used to perform nonlinear static and dynamic analyses. Analytical results showed that the semi-special shear wall improved significantly the performance in terms of ductility and energy dissipation as expected based on previous test results. Furthermore, nonlinear incremental dynamic analysis was performed using 20 ground motions. Based on computer analytical results, the ordinary shear wall, special shear wall and newly proposed semi-special shear wall systems were evaluated based on the methods in FEMA P965. The results based on the probabilistic approaches accounting for inherent uncertainties showed that the semi-special shear wall systems provide a high capacity/demand (ACMR) ratio owing to their details, which provide enough capacity to sustain large inelastic deformations.

Prediction-based Interacting Multiple Model Estimation Algorithm for Target Tracking with Large Sampling Periods

  • Ryu, Jon-Ha;Han, Du-Hee;Lee, Kyun-Kyung;Song, Taek-Lyul
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.44-53
    • /
    • 2008
  • An interacting multiple model (IMM) estimation algorithm based on the mixing of the predicted state estimates is proposed in this paper for a right continuous jump-linear system model different from the left-continuous system model used to develop the existing IMM algorithm. The difference lies in the modeling of the mode switching time. Performance of the proposed algorithm is compared numerically with that of the existing IMM algorithm for noisy system identification. Based on the numerical analysis, the proposed algorithm is applied to target tracking with a large sampling period for performance comparison with the existing IMM.

Fuzzy regression using regularlization method based on Tanaka's model

  • Hong Dug-Hun;Kim Kyung-Tae
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.499-505
    • /
    • 2006
  • Regularlization approach to regression can be easily found in Statistics and Information Science literature. The technique of regularlization was introduced as a way of controlling the smoothness properties of regression function. In this paper, we have presented a new method to evaluate linear and non-linear fuzzy regression model based on Tanaka's model using the idea of regularlization technique. Especially this method is a very attractive approach to model non -linear fuzzy data.

관측기 모델 선정을 통한 모델 불확실성을 갖는 선형 시불변 시스템 강인 안정화 (Robust Stabilization of Uncertain LTI Systems via Observer Model Selection)

  • 오상록;김정수;심형보
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.822-827
    • /
    • 2014
  • This paper presents a robust observer-based output feedback control for stabilization of linear time invariant systems with polytopic uncertainties. To this end, this paper not only finds a robust observer gain but also suggests how to determine the model used in the observer, which is not obvious due to model uncertainties in the conventional observer design method. The robust observer gain and the observer model are selected in a way that the whole closed-loop is stable by solving LMIs and BMIs (Linear Matrix Inequalities and Bilinear Matrix Inequalities). A simulation example shows that the proposed robust observer-based output feedback control successfully leads to closed-loop stability.

Abstracted Meta-model for Effective Capabilities Portfolio Management (CPM)

  • Lee, Joongyoon;Yoon, Taehoon;Park, Youngwon
    • 시스템엔지니어링학술지
    • /
    • 제7권1호
    • /
    • pp.31-41
    • /
    • 2011
  • The purpose of this paper is to provide an abstracted meta-model for executing Capabilities Portfolio Management (CPM) effectively based on DoDAF2.0. The purpose of developing an architecture is for beneficial use of it. A good set of architectural artifacts facilitates the manipulation and use of them in meeting its usage objectives well. Systems engineering methodologies evolve to accommodate or to deal with enterprise or SoS/FoS level problems. And DoD's Capabilities Portfolio Management (CPM) is a good example which demonstrates enterprise or SoS level problems. However, the complexity of the architecture framework makes it difficult to develop and use the architecture models and their associated artifacts. DoDAF states that it was established to guide the development of architectures and to satisfy the demands of a structured, repeatable method for evaluating alternatives which add value to decisions and management practices. One of the objectives of DoDAF2.0 is to define concepts and models usable in CPM which is one of DoD's six core processes. However, DoDAF and various guidelines state requirements for CPM rather than how to. This paper provides methodology for CPM which includes process and tailored meta-models based on DoDAF Meta Model (DM2).

Modeling of Dynamic Hysteresis Based on Takagi-Sugeno Fuzzy Duhem Model

  • Lee, Sang-Yun;Park, Mignon;Baek, Jaeho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권4호
    • /
    • pp.277-283
    • /
    • 2013
  • In this study, we propose a novel method for modeling dynamic hysteresis. Hysteresis is a widespread phenomenon that is observed in many physical systems. Many different models have been developed for representing a hysteretic system. Among them, the Duhem model is a classical nonlinear dynamic hysteresis model satisfying the properties of hysteresis. The purpose of this work is to develop a novel method that expresses the local dynamics of the Duhem model by a linear system model. Our approach utilizes a certain type of fuzzy system that is based on Takagi-Sugeno (T-S) fuzzy models. The proposed T-S fuzzy Duhem model is achieved by fuzzy blending of the linear system model. A simulated example applied to shape memory alloy actuators, which have typical hysteretic properties, illustrates the applicability of our proposed scheme.

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.