• Title/Summary/Keyword: Model-based parameter estimation

Search Result 679, Processing Time 0.03 seconds

MRF Model based Image Segmentation using Genetic Algorithm (유전자 알고리즘을 이용한 MRF 모델 기반의 영상분할)

  • Kim, Eun-Yi;Park, Se-Hyun;Jung, Kee-Chul;Kim, Hang-Joon
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.9
    • /
    • pp.66-75
    • /
    • 1999
  • Image segmentation is the process where an image is segmented into regions that are set of homogeneous pixels. The result has a ciritical effect on accuracy of image understanding. In this paper, an Markov random field (MRF) image segmentation is proposed using genetic algorithm(GA). We model an image using MRF which is resistant to noise and blurring. While MRF based methods are robust to degradation, these require accurate parameter estimation. So GA is used as a segmentation algorithm which is effective at dealing with combinatorial problems. The efficiency of the proposed method is shown by experimental results with real images and application to automatic vehicle extraction system.

  • PDF

Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning

  • Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.671-680
    • /
    • 2022
  • The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.

Application of SIMC Based Quad-rotor Cascade Control by Using 1-axis Attitude Control Test-bench (1축 자세제어실험 장비를 이용한 SIMC 기반 쿼드로터 Cascade 제어기 적용에 관한 연구)

  • Choi, Yun-sung;You, Young-jin;Jeong, Jin-seok;Kang, Beom-soo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.473-483
    • /
    • 2015
  • This paper reports the single-input-single-output cascade control by using 1-axis attitude control test-bench for quad-rotor UAV. The test-bench was designed as a see-saw shape using 2 motors and propellers, and to enable changing the center of gravity with the center of gyration using ballast. The experiment was carried out by constructing a PID-PID controller having a cascade structure with the test-bench. The SIMC based PID gain tuning process, which makes PID gain tuning easy, was grafted to cascade control. To graft SIMC method, the system parameter estimation result was conducted with second order time delay model by using Matlab-Simulink. Gain tuning was conducted by simulating with estimated system parameter. In this paper, the conventional application of SIMC was conducted and improved application was proposed for improving stability at tuning process.

Fault Tolerant Control of DC-Link Voltage Sensor for Three-Phase AC/DC/AC PWM Converters

  • Kim, Soo-Cheol;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.695-703
    • /
    • 2014
  • In this paper, a fault detection scheme for DC-link voltage sensor and its fault tolerant control strategy for three-phase AC/DC/AC PWM converters are proposed, where the Luenberger observer is applied to estimate the DC-link voltage. The Luenberger observer is based on a converter model, which is derived from the voltage equations of a grid-side converter and the power balance on a DC link. A fault of the voltage sensor is detected by comparing the measured value of the DC-link voltage with the estimated one. When a sensor fault is detected, a fault tolerant control strategy is performed, where the estimated DC-link voltage is used for the feedback control. The estimation error from the observer is about 1.5 V, which is sufficiently accurate for feedback control. In addition, it is shown that the observer performance is robust to parameter variations of the converter. The validity of the proposed method has been verified by simulation and experimental results.

Variable selection in partial linear regression using the least angle regression (부분선형모형에서 LARS를 이용한 변수선택)

  • Seo, Han Son;Yoon, Min;Lee, Hakbae
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.937-944
    • /
    • 2021
  • The problem of selecting variables is addressed in partial linear regression. Model selection for partial linear models is not easy since it involves nonparametric estimation such as smoothing parameter selection and estimation for linear explanatory variables. In this work, several approaches for variable selection are proposed using a fast forward selection algorithm, least angle regression (LARS). The proposed procedures use t-test, all possible regressions comparisons or stepwise selection process with variables selected by LARS. An example based on real data and a simulation study on the performance of the suggested procedures are presented.

Characteristics and Synergistic Effects of Coal/Wasted Tire/Polypropylene Coliquefaction (II) (석탄, 폐타이어, 폴리프로필렌 공동액화 특성 및 상승효과(II))

  • Jeong, Dae-Heui;Jeong, Tae-Jin;Kim, Sang-Jun;Na, Byung-Ki;Song, Hyung-Keun;Yoon, Do-Young;Kim, Dae-Heum;Han, Choon
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.370-378
    • /
    • 2001
  • Characteristics and synergistic effects of the coliquefaction of Alaskan subbituminous coal, wasted tire, and polypropylene were investigated in a tubing-bomb reactor at 41$0^{\circ}C$, and the coliquefaction reactions were performed at 37$0^{\circ}C$~45$0^{\circ}C$ to evaluate the coliquefaction mechanism. The coliquefaction kinetic model based on the free-radical theory was proposed and simulated by the non-linear parameter estimation method. Simulated results represented experimental ones successfully with the correlation coefficient of 0.99. When a catalyst was not used, the conversions were decreased as tetralin increase due to the decrease of liquefaction of polypropylene. When naphthenate catalysts of Mo, Co, and Fe were used, the coliquefaction conversions were increased with the increase of the liquefaction of polypropylene. When Co-naphthenate catalyst was used, the increase of the coliquefaction conversion were as high as 21~23%.

  • PDF

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method (GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Analysis on prediction models of TBM performance: A review (TBM 굴진성능 예측모델 분석: 리뷰)

  • Lee, Hang-Lo;Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.245-256
    • /
    • 2016
  • Prediction of TBM performance is very important for machine selection, and for reliable estimation of construction cost and period. The purpose of this research is to analyze the evaluation process of various prediction models for TBM performance and applied methodology. Based on the solid literature review since 2000, a classification system of TBM performance prediction model is proposed in this study. Classification system suggested in this study can be divided into two stages: selection of input parameter and application of prediction techniques. We also analyzed input and output parameters for prediction model and frequency of use. Lastly, the future research and development trend of TBM performance prediction is suggested.