Journal of the Korean Institute of Telematics and Electronics C (전자공학회논문지C)
- Volume 36C Issue 9
- /
- Pages.66-75
- /
- 1999
- /
- 1226-5853(pISSN)
MRF Model based Image Segmentation using Genetic Algorithm
유전자 알고리즘을 이용한 MRF 모델 기반의 영상분할
- Kim, Eun-Yi (Department of Computer Engineering) ;
- Park, Se-Hyun (Department of Computer Engineering) ;
- Jung, Kee-Chul (Department of Computer Engineering) ;
- Kim, Hang-Joon (Department of Computer Engineering)
- Published : 1999.09.01
Abstract
Image segmentation is the process where an image is segmented into regions that are set of homogeneous pixels. The result has a ciritical effect on accuracy of image understanding. In this paper, an Markov random field (MRF) image segmentation is proposed using genetic algorithm(GA). We model an image using MRF which is resistant to noise and blurring. While MRF based methods are robust to degradation, these require accurate parameter estimation. So GA is used as a segmentation algorithm which is effective at dealing with combinatorial problems. The efficiency of the proposed method is shown by experimental results with real images and application to automatic vehicle extraction system.
영상분할은 입력된 영상을 처리하여 유사한 화소들의 집합인 영역들로 화소들을 구분하는 작업이다. 영상분할의 결과는 영상인식의 정확성에 큰 영향을 미친다. 본 논문에서는 유전자 알고리즘을 이용하여 마르코프 랜덤 필드(Markov random field)에 기반한 영상분할 방법을 제안한다. 제안한 방법에서는 잡음과 흔들림(blurring)에 강한 MRF를 이용하여 영상을 모델링 한다. HRF기반 영상분할 방법은 왜곡에 강한 반면, 정확한 파라미터의 추정이 요구된다. 그래서 , 추정방법으로 많은 파라미터를 포함하는 문제를 다루는데 효율적인 유전자 알고리즘을 사용한다. 실 영상을 가지고 수행된 실험 결과와 자동 차량 추출 시스템에의 응용결과는 제안된 방법의 효율성을 보여준다.
Keywords