• Title/Summary/Keyword: Model-based engine control

Search Result 169, Processing Time 0.026 seconds

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

A Design Control System of Hybrid Underwater Glider and Performance Test (하이브리드 수중 글라이더의 제어 시스템 설계 및 성능 시험)

  • Ji, Dae-hyeong;Choi, Hyeung-sik;Kim, Joon-young;Jung, Dong-wook;Jeong, Seong-hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • In this paper, we studied the control of the hybrid underwater glider (HUG), which has the advantage of high precision route search function and long-term mission capability. Dynamic modeling of HUG is based on numerical model of the attitude controller and buoyancy engine, thruster. We designed the control part considering the smooth control and precise sailing of HUG. A buoyancy engine capable of inhaling water is designed to control the buoyancy of HUG. And mass shifter carrying the battery was designed for controlling pitching motion of HUG. A control system for controlling the buoyancy engine and the attitude controller was constructed. In order to verify performance, we performed water tank test using manufactured HUG.

A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives (터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구)

  • Han,Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.61-71
    • /
    • 2003
  • In the study of control technique for a turbojet engine model, the Takagi-Sugeno fuzzy logic controller has been designed based on the model identification by the well designed PI controlled system through T-S neuro-fuzzy inference system. To enhance this designed controller, those procedures are proposed that certainty factors are adopted to each rule of objective groups which are classified by the fuzzy C-Means algorithm and the satisfaction degrees are matched to meet the objectives. This proposed technique shows its feasibility by upgrading performances of the previously well-designed T-S fuzzy controller.

Development of the Condition Monitoring Test Cell Using the Micro Gas Turbine Engine (초소형 가스터빈을 이용한 상태감시 시험장치 개발)

  • Kho, Seong-Hee;Ki, Ja-Young;Koo, Young-Ju;Kong, Chang-Duk;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.345-349
    • /
    • 2009
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 30lbf-micro turbojet engine.

  • PDF

Development of the Performance Test Cell Using the Small Gas Turbine Engine of 80 lbf-Thrust (80lbf급 소형 가스터빈 엔진의 성능 시험장치 개발)

  • Jin, Hak-Su;Kho, Seong-Hee;Ki, Ja-Young;Yong, Seong-Ju;Kang, Myoung-Cheol;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.495-498
    • /
    • 2010
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 80 lbf-micro turbojet engine.

  • PDF

Intelligent Attitude Control of an Unmanned Helicopter

  • An, Seong-Jun;Park, Bum-Jin;Suk, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.265-270
    • /
    • 2005
  • This paper presents a new attitude stabilization and control of an unmanned helicopter based on neural network compensation. A systematic derivation on the dynamics of an unmanned small-scale helicopter is performed. Combined rotor-fuselage-tail dynamics is derived in body-fixed reference frame with its origin at the C.G. of the helicopter. And the resulting nonlinear equation of motion consists of 6-DOF air vehicle dynamics as well as the rotor flapping and engine torque equations. A simulation model was modified using the existing simulator for an unmanned helicopter dynamic model, which reflects the unmanned test helicopter(CNUHELI). The dynamic response of the refined model was compared with the flight test data. It can be shown that a good coincidence was accomplished between the real unmanned helicopter system and the mathematical model. This dynamic model was linearized for classical controller design using small perturbation method. A Neuro-PD control system was designed for both longitudinal and lateral flight modes, and the results were compared with the PD-only control response. Simulation results show that the proposed Neuro-PD control system demonstrates better performance.

  • PDF

Model-based Autonomic Computing Framework for Cyber-Physical Systems (CPS를 위한 모델 기반 자율 컴퓨팅 프레임워크)

  • Kang, Sungjoo;Chun, Ingeol;Park, Jeongmin;Kim, Wontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.267-275
    • /
    • 2012
  • In this paper, we present the model-based autonomic computing framework for a cyber-physical system which provides a self-management and a self-adaptation characteristics. A development process using this framework consists of two phases: a design phase in which a developer models faults, normal status constrains, and goals of the CPS, and an operational phase in which an autonomic computing engine operates monitor-analysis-plan-execute(MAPE) cycle for managed resources of the CPS. We design a hierachical architecture for autonomic computing engines and adopt the Model Reference Adaptive Control(MRAC) as a basic feedback loop model to separate goals and resource management. According to the GroundVehicle example, we demonstrate the effectiveness of the framework.

A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine (4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구)

  • 김철수;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

Real Time Fault Diagnosis of UAV Engine Using IMM Filter and Generalized Likelihood Ratio Test (IMM 필터 및 GLRT를 이용한 무인기용 엔진의 실시간 결함 진단)

  • Han, Dong-Ju;Kim, Sang-Jo;Kim, Yu-Il;Lee, Soo-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.541-550
    • /
    • 2022
  • An effective real time fault diagnosis approach for UAV engine is drawn from IMM filter and GLRT methods. For this purpose based on the linear diagnosis model derived from engine dynamic performance analysis the Kalman filter for residual estimation and each method are applied to the fault diagosis of the actuator for engine control sensors. From the process of the IMM filter application the effective FDI measure is obtained and the state responses due to actuator fault are estimated. Likewise from the GLRT method the fault magnitudes of actuator and sensors are estimated associated with some FDI functionings. The numerical simulations verify the effectiveness of the IMM filter for FDI and the GLRT in estimating the fault magnitudes of each fault mode.

PID controller design based on direct synthesis for set point speed control of gas turbine engine in warships (함정용 가스터빈 엔진의 속도 추종제어를 위한 DS 기반의 PID 제어기 설계)

  • Jong-Phil KIM;Ki-Tak RYU;Sang-Sik LEE;Yun-Hyung LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Gas turbine engines are widely used as prime movers of generator and propulsion system in warships. This study addresses the problem of designing a DS-based PID controller for speed control of the LM-2500 gas turbine engine used for propulsion in warships. To this end, we first derive a dynamic model of the LM-2500 using actual sea trail data. Next, the PRC (process reaction curve) method is used to approximate the first-order plus time delay (FOPTD) model, and the DS-based PID controller design technique is proposed according to approximation of the time delay term. The proposed controller conducts set-point tracking simulation using MATLAB (2016b), and evaluates and compares the performance index with the existing control methods. As a result of simulation at each operating point, the proposed controller showed the smallest in %OS, which means that the rpm does not change rapidly. In addition, IAE and IAC were also the smallest, showing the best result in error performance and controller effort.