• Title/Summary/Keyword: Model-based Fault Diagnosis

Search Result 220, Processing Time 0.025 seconds

Model Based Switch Open Fault Detection and Diagnosis for SPMSM (전압 오차를 이용한 인버터의 스위치 개방 고장 감지 및 진단)

  • Lim, Gyu Cheol;Choi, Young Hyun;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.103-104
    • /
    • 2017
  • 영구자석 전동기는 전력 밀도가 높고 효율이 좋은 특징으로 견인, 의료, 군사 분야 등 다양한 산업 분야에서 사용되고 있다. 이러한 분야에서 사용되는 전동기 구동 시스템은 높은 신뢰성이 요구되므로 인버터에서 발생하는 전력 반도체 스위치 고장을 빠르게 감지해야한다. 본 논문에서는 제어기 상전압 지령과 추정된 상전압 사이의 오차를 통해 전력 반도체 개방 고장을 감지하고 진단하는 방법을 제시하였다. 제안된 방법은 추가적인 측정 회로 없이 제어기 내부 값을 사용하여 개방 고장을 감지하고 개방된 스위치를 진단할 수 있다. 특히 부하 변동을 고려한 감지 방법을 제안하여 고장 감지의 신뢰성을 개선한다.

  • PDF

The Development of Infrared Thermal Imaging Safety Diagnosis System Using Pearson's Correlation Coefficient (피어슨 상관계수를 이용한 적외선 열화상 안전 진단 시스템 개발)

  • Jung, Jong-Moon;Park, Sung-Hun;Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the rapid development of the national industry, the importance of electrical safety was recognized because of a lot of new electrical equipment are installing and the electrical accidents have been occurring annually. Today, the electrical equipments is inspect by using the portable Infrared thermal imaging camera. but the most negative element of using the camera is inspected for only state of heating, the reliable diagnosis is depended with inspector's knowledge, and real-time monitoring is impossible. This paper present the infrared thermal imaging safety diagnosis system. This system is able to monitor in real time, predict the state of fault, and diagnose the state with analysis of thermal and power data. The system consists of a main processor, an infrared camera module, the power data acquisition board, and a server. The diagnostic algorithm is based on a mathematical model designed by analyzing the Pearson's Correlation Coefficient between temperature and power data. To test the prediction algorithm, the simulations were performed by damaging the terminals or cables on the switchboard to generate a large amount of heat. Utilizing these simulations, the developed prediction algorithm was verified.

Model-based Diagnosis for Crack in a Gear of Wind Turbine Gearbox (풍력터빈 기어박스 내의 기어균열에 대한 모델 기반 고장진단)

  • Leem, Sang Hyuck;Park, Sung Hoon;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2013
  • A model-based method is proposed to diagnose the gear crack in the gearbox under variable loading condition with the objective to apply it to the wind turbine CMS(Condition Monitoring System). A simple test bed is installed to illustrate the approach, which consists of motors and a pair of spur gears. A crack is imbedded at the tooth root of a gear. Tachometer-based order analysis, being independent on the shaft speed, is employed as a signal processing technique to identify the crack through the impulsive change and the kurtosis. Lumped parameter dynamic model is used to simulate the operation of the test bed. In the model, the parameter related with the crack is inversely estimated by minimizing the difference between the simulated and measured features. In order to illustrate the validation of the method, a simulated signal with a specified parameter is virtually generated from the model, assuming it as the measured signal. Then the parameter is inversely estimated based on the proposed method. The result agrees with the previously specified parameter value, which verifies that the algorithm works successfully. Application to the real crack in the test bed will be addressed in the next study.

Priority-based Differentiated Service in Spectrum Mobility Game

  • Lu, Bingxian;Qin, Zhenquan;Wang, Lei;Sun, Liang;Zhu, Ming;Shu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1324-1343
    • /
    • 2014
  • In recent years, the problem of spectrum mobility in Cognitive Radio (CR) Networks has been widely investigated. In order to utilize spectrum resources completely, many spectrum handoff techniques based on game theory have been proposed, but most studies only concern that users how to achieve better payoffs, without much attention to the diverse needs of users. In this paper, we propose a new channel-switching model based on game theory, using a prioritized approach to meet the diverse needs of users in two different modes (CQ and PS). At the same time, this paper proposes some acceleration techniques to reach the Nash equilibrium more efficiently. We evaluate the performance of the proposed schemes depending on priority using real channel availability measurements, and conclude that the channel quality function (CQ) mode provide better service for priority user but the plan-sorting (PS) mode can be more suitable in multiple priority users exist scene.

Condition Monitoring of Link Driving System with Clearance (간극이 있는 링크구동계의 상태진단)

  • 최연선;민선환
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.125-131
    • /
    • 2001
  • There is a clearance between the parts of a machine due to design tolerance, manufacturing error, wear, looseness, or misalignment. If the clearance is large, the vibration and noise of the machine is generally large. Therefore, the analysis on the nitration and noise of a machine can tell the clearance of the machine, which reveals the condition of the machine, i.e., the existence of faults and the safety of the machine. The investigation of this kind of research should be on the basis of experimental results. A link mechanism with a clearance at a joint between the coupler and locker is made for the investigation of the condition monitoring of a machine due to clearance. The vibration and sound are measured from the link driving system during the operation. The signals are clarified using line enhancement technique. The noise removed signals are used to develop the dynamic model of the system for a model based fault diagnosis. Also this study showed that the clarified signals can be used for the calculation of the joint forces between the coupler and rocker and for the correlation between the vibration and sound levels and the clearance sizes.

  • PDF

A Study on Estimating Real-time Thermal Load During GHP Operation in Heating Mode (GHP 난방 모드 운전시 실시간 부하 추정방법에 관한 연구)

  • Seo, Jeong-A;Shin, Young-Gy;Oh, Se-Je;Jeong, Sang-Duck;Ji, Kyoung-Chul;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • The present study has been conducted to propose an algorithm regarding real-time load estimation of a gas engine-driven heat pump. In the study, thermal load of an indoor unit is estimated in terms of air-side and refrigerant-side. The air-side estimation is based on a typical heat exchanger model and is found to be in good agreement with experimental data. When it comes to the refrigerant-side load, a pressure difference across a valve must be estimated. For the estimation, it is assumed to be proportional to a bigger pressure difference that is available either by measurement or by estimation. Relative good agreement between the air- and refrigerant-sides suggests that the assumption may be plausible for the load estimation. The summed flow rate of all of indoor units is in good agreement with the throughput of the compressor which are calculated from the manufacturer's software. Accordingly, estimated thermal loads are also in good agreement. The proposed algorithm may be further developed for improved control algorithm and fault diagnosis.

Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity (주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법)

  • Kim, Hye-Jin;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.299-306
    • /
    • 2022
  • In recent, sensors embedded in robots, equipment, and circuits have become common, and research for diagnosing device failures by learning measured sensor data is being actively conducted. This failure diagnosis study is divided into a classification model for predicting failure situations or types and a regression model for numerically predicting failure conditions. In the case of a classification model, it simply checks the presence or absence of a failure or defect (Class), whereas a regression model has a higher learning difficulty because it has to predict one value among countless numbers. So, the reason that regression modeling is more difficult is that there are many irregular situations in which it is difficult to determine one output from a similar input when predicting by matching input and output. Therefore, in this paper, we focus on input and output data with periodicity, analyze the input/output relationship, and secure regularity between input and output data by performing sliding window-based input data patterning. In order to apply the proposed method, in this study, current and temperature data with periodicity were collected from MMC(Modular Multilevel Converter) circuit system and learning was carried out using ANN. As a result of the experiment, it was confirmed that when a window of 2% or more of one cycle was applied, performance of 97% or more of fit could be secured.

Research on rapid source term estimation in nuclear accident emergency decision for pressurized water reactor based on Bayesian network

  • Wu, Guohua;Tong, Jiejuan;Zhang, Liguo;Yuan, Diping;Xiao, Yiqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2534-2546
    • /
    • 2021
  • Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident diagnosis, source term estimation, accident consequence assessment, and protective action recommendation. Source term estimation is almost the most difficult part among them. For example, bad communication, incomplete information, as well as complicated accident scenario make it hard to determine the reactor status and estimate the source term timely in the Fukushima accident. Subsequently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this paper aims to develop a method for rapid source term estimation to support nuclear emergency decision making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide better support nuclear emergency. Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional knowledge and engineering knowledge. This paper presents a method transforming the PRA model (event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors associated directly with their occurrence, a weighted assignment approach based on expert assessment is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network model, the real-time status of pivotal events and initiating events can be determined based on the junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible release categories, the proposed method is capable to find the most likely release category for the candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences and the source term are calculated. Finally, the prototype software is checked against several sets of accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The results show that the proposed method for rapid source term estimation under nuclear emergency decision making is promising.

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

Probabilistic Modeling of Photovoltaic Power Systems with Big Learning Data Sets (대용량 학습 데이터를 갖는 태양광 발전 시스템의 확률론적 모델링)

  • Cho, Hyun Cheol;Jung, Young Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.412-417
    • /
    • 2013
  • Analytical modeling of photovoltaic power systems has been receiving significant attentions in recent years in that it is easy to apply for prediction of its dynamics and fault detection and diagnosis in advanced engineering technologies. This paper presents a novel probabilistic modeling approach for such power systems with a big data sequence. Firstly, we express input/output function of photovoltaic power systems in which solar irradiation and ambient temperature are regarded as input variable and electric power is output variable respectively. Based on this functional relationship, conditional probability for these three random variables(such as irradiation, temperature, and electric power) is mathematically defined and its estimation is accomplished from ratio of numbers of all sample data to numbers of cases related to two input variables, which is efficient in particular for a big data sequence of photovoltaic powers systems. Lastly, we predict the output values from a probabilistic model of photovoltaic power systems by using the expectation theory. Two case studies are carried out for testing reliability of the proposed modeling methodology in this paper.