• Title/Summary/Keyword: Model-Reference Adaptive Control

Search Result 380, Processing Time 0.033 seconds

Adaptive Fuzzy Controller for Speed Control of Servo Motor (서보 전동기 속도 제어를 위한 적응 퍼지 제어기)

  • Son, Jae-Hyun;Roh, Cheung-Min;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.947-949
    • /
    • 1995
  • In this paper, model reference adaptive fuzzy controller (MRAFC) was proposed in order to overcome the difficulty of extracting rules and defects of the adaptation performance in the FLC. MRAFC comprised inner feedback loop consisting of the FLC and plant, and outer loop consisting of an adaptation mechanism which is designed for tuning a control rule of the FLC. A reference-model was used for design criteria of a fuzzy controller which characterizes and quantizes the control performance required in the overall control system. Tuning control rules of FLC is performed by the adaptation mechanism. For this, the fuzzy model for tuning the contorl rules is designed in accordance with the feature of error information. And DC servo motor was selected for case study of actual industrial plant and tested on various loads.

  • PDF

Parameter estimation and adaptive control of permanent magnet synchronous motors (매입형 영구자석 동기전동기 상수의 추정 및 적응제어기법)

  • Yang, Hyunsuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1044-1050
    • /
    • 2014
  • Maximum torque per ampere vector controller is widely used to control permanent magnet synchronous motors. For the controller to work properly, it is important to know the exact values of motor parameters such as a stator resistance, inductances, and the flux linkage of the permanent magnet. In this paper, an adaptive control algorithm is proposed to estimate these parameters using MRAS(Model Reference Adaptive System). Simulation results demonstrate the effectiveness of the proposed algorithm.

Sensorless Speed Control of Induction motor using the Intelligent Speed Estimator (지능형 속도 추정기를 이용한 유도전동기의 센서리스 속도제어)

  • Park, Jin-Su;Choi, Sung-Dae;Kim, Sang-Hoon;Yoon, Kwang-Ho;Ban, Gi-Jong;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.660-662
    • /
    • 2004
  • This paper proposes an Intelligent Speed Estimator in order to realize the speed-sensorless vector control of an induction motor. Intelligent Speed Estimator used Model Reference Adaptive System which has Fuzzy-Neural adaptive mechanism as Speed Estimation method. The Intelligent Speed Estimator estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. The Intelligent Speed Estimator reduces the error of the rotor flux between the voltage flux model and the current flux model using the error and the change of error as input of the Estimator. The computer simulation is executed to verify the propriety and the effectiveness of the proposed speed estimator.

  • PDF

A design of neuro-fuzzy adaptive controller using a reference model following function (기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계)

  • Lee, Young-Seog;Ryoo, Dong-Wan;Seo, Bo-Hyeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF

Pitch-axis Maneuver of UAVs by Adaptive Control Approach (무인항공기의 적응제어 법칙을 이용한 피치 기동 연구)

  • Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1170-1176
    • /
    • 2010
  • This study addresses adaptive control of UAVs(Unmanned Aerial Vehicles) pitch-axis maneuver. The MRAC(Model Referenced Adaptive Control) approach is employed to accommodate uncertainties which are introduced by feedback linearization of pitch attitude control by elevator input. The model uncertainty is handled by adaptation laws which update model parameters while the UAV is under control by the feedback control law. Steady-state pitch attitude achieved by the stabilizing control law is derived to provide insight on the closed-loop behavior of the controlled system. The proposed idea is free of linearization, gain-scheduling procedures, so that one can design high maneuverability of UAVs for pitching motion in the presence of significant model uncertainty.

Torque Control of Brushless DC Motor Using a Clustering Adaptive Fuzzy Logic Controller (클러스터링 적응 퍼지 제어기를 이용한 브러시리스 직류 전동기의 토크 제어)

  • 권정진;한우용;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.349-349
    • /
    • 2000
  • A Clustering Adaptive Fuzzy Logic Controller(CAFLC) is applied to the torque control of a brushless do motor drive. Objective of this system includes elimination of torque ripple due to cogging at low speeds under loads. The CAFLC implemented has advantages of computational simplicity, and self-tuning characteristics. Simulation results showed that the torque ripple and dynamic response of the system using a CAFLC were superior to the model reference adaptive controlled system.

  • PDF

On a Configuration of the Model Reference Adative Control Systems -On an Improvement of the Adapting speed in MRAC Systems- (기본모델 적응시스템의 합성에 관한 연구)

  • 장세훈;이순영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.1
    • /
    • pp.17-20
    • /
    • 1984
  • The motivation in this paper is in constructing the controller with faster adapting speed than the one using the errors between the states of the plant and the model as the adaptive criterion. In the first part of this work, the adaptive law is found by using the state errors. In the later part, the adaptive law is obtained by introducing the companion model method. Finally the justification for the adaptive speed characteristics are compared.

  • PDF

Adaptive NFC Control for High Performance Control of SPMSM Drive (SPMSM 드라이브의 고성능 제어를 위한 적응 NFC 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Nam Su-Myeong;Park Gi-Tae;Chung Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1248-1250
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network controller(NFC) for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on NFC that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive NFC is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

A Robust Adaptive Control of Robot Manipulator Based on TMS320C80

  • Han, Sung-Hyun;Jung, Dong-Yean;Shin, Heang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2540-2545
    • /
    • 2003
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

Decentralized Model Reference Adaptive Control of a Class of Interconnected Continuous Systems (일련의 상호연결된 연속시간 시스템의 비집중 모델기준 적응제어)

  • Lyou, Joon;Kim, Sung-Soo;Yim, In-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.930-935
    • /
    • 1987
  • This paper presents a decentralized model reference adaptive control scheme for an interconnected continuous linear system composed of a number of single input single output subsystems. The scheme can treat the unknown strengh of interconnections as well as the uncertainty of subsystems. The scheme automatically adjusts the local feedback gains so that the output of each subsystem exponetially tracks that of the reference model.

  • PDF