• 제목/요약/키워드: Model-Based Fault Diagnosis

검색결과 220건 처리시간 0.021초

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.

연속학습을 활용한 경량 온-디바이스 AI 기반 실시간 기계 결함 진단 시스템 설계 및 구현 (Design and Implementation of a Lightweight On-Device AI-Based Real-time Fault Diagnosis System using Continual Learning)

  • 김영준;김태완;김수현;이성재;김태현
    • 대한임베디드공학회논문지
    • /
    • 제19권3호
    • /
    • pp.151-158
    • /
    • 2024
  • Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.

CNC 공작기계에서 열변형 오차 보정 시스템의 고장진단 및 복구 (Fault Diagnosis and Recovery of a Thermal Error Compensation System in a CNC Machine Tool)

  • 황석현;이진현;양승한
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.135-141
    • /
    • 2000
  • The major role of temperature sensors in thermal error compensation system of machine tools is improving machining accuracy by supplying reliable temperature data on the machine structure. This paper presents a new method for fault diagnosis of temperature sensors and recovery of faulted data to establish the reliability of thermal error compensation system. The detection of fault and its location is based on the correlation coefficients among temperature data from the sensors. The multiple linear regression model which is prepared using complete normal data is also used fur the recovery of faulted data. The effectiveness of this method was tested by comparing the computer simulation results and measured data in a CNC machining center.

  • PDF

A model-based fault diagnosis in uncertain systems

  • Kwon, Oh-Kyu;Sung, Yul-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1210-1215
    • /
    • 1990
  • This paper deals with the fault diagnosis problem in uncertain linear systems having undermodelling, linearization errors and noise inputs. The new approach proposed in this paper uses an appropriate test variable and the difference between system parameters which are estimated by the least squares method to locate the fault. The singular value decomposion is used to decouple the correlation between the estimated system parameters and to observe the trend of parameter changes. Some simulations applied to aircraft ergines show good allocation of the fault even though the system model has significant uncertainties. The feature of the approach is to diagnose the uncertain system through simple parameter operations and not to need complex calculations in the diagnosis procedure as compared with other methods.

  • PDF

A Current Dynamic Analysis Based Open-Circuit Fault Diagnosis Method in Voltage-Source Inverter Fed Induction Motors

  • Tian, Lisi;Wu, Feng;Shi, Yi;Zhao, Jin
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.725-732
    • /
    • 2017
  • This paper proposed a real-time, low-cost, fast transistor open-circuit fault diagnosis method for voltage-source inverter fed induction motors. A transistor open-circuit changes the symmetry of the inverter topology, leading to different similarities among three phase load currents. In this paper, dynamic time warping is proposed to describe the similarities among load currents. The proposed diagnosis is independent of the system model and needs no extra sensors or electrical circuits. Both simulation and experimental results show the high efficiency of the proposed fault diagnosis method.

IMM 필터 및 GLRT를 이용한 무인기용 엔진의 실시간 결함 진단 (Real Time Fault Diagnosis of UAV Engine Using IMM Filter and Generalized Likelihood Ratio Test)

  • 한동주;김상조;김유일;이수창
    • 한국항공우주학회지
    • /
    • 제50권8호
    • /
    • pp.541-550
    • /
    • 2022
  • IMM 필터 및 GLRT 기법을 이용하여 무인기용 엔진의 효과적인 실시간 결함 진단 방안을 도출하였다. 이를 위해서 엔진 동적 사이클해석으로부터 선형 진단 모델을 유도하고 잔차 추정을 위한 칼만필터를 도입한 후 각 기법의 특성을 고찰하여 엔진 제어 구동기 및 센서의 결함 진단에 적용하였다. 이 과정에서 IMM 필터로부터 효과적인 FDI 방안을 도출하였고 구동기 결함으로 인한 상태변수의 반응값을 추정하였으며, GLRT로부터는 구동기 및 센서의 결함값 추정과 FDI 기능을 확인하였다. 수치 모의시험 결과를 통해서 FDI를 위한 IMM 필터의 효용성과 각 결함 모드의 결함값 추정을 위한 GLRT 기법의 효용성을 확인하였다.

선형보간법을 이용한 매립형 영구자석 동기모터의 감자고장진단 (Demagnetization Fault Diagnosis in IPMSM Using Linear Interpolation)

  • 정혜윤;문석배;이호진;김상우
    • 전기학회논문지
    • /
    • 제66권3호
    • /
    • pp.568-574
    • /
    • 2017
  • This paper proposes a demagnetization fault diagnosis method for interior permanent magnet synchronous motors(IPMSMs). In particular, a demagnetization fault is one of the most frequent electrical faults in IPMSMs. This paper proposes an estimation method for permanent magnet flux. The method is based on linear interpolation. The effectiveness of the proposed method for diagnose demagnetization faults is verified through various operating conditions by finite element simulation.

비선형시스템의 고장진단을 위한 신경회로망 기반 통계적접근법 (Neural Networks-based Statistical Approach for Fault Diagnosis in Nonlinear Systems)

  • 이인수;조원철
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.503-510
    • /
    • 2002
  • 본 논문에서는 비선형시스템에서 발생한 고장을 감지하고 분류하기 위해 신경회로망기반 다중고장모델과 통계적기법에 의한 고장진단 방법을 제안한다. 제안한 알고리듬에서는 시스템의 출력과 신경회로망 공칭모델 출력 사이의 오차가 미리 설정한 문턱 값을 넘으면 고장을 감지한다. 고장이 감지되면 고장분류기에서는 각 신경회로망 고장모델 출력과 시스템 출력 사이의 오차를 이용하여 통계적 기법으로 고장을 분류한다. 컴퓨터 시뮬레이션 결과로부터 제안한 고장진단방법이 비선형 시스템에서의 고장감지 및 분류문제에 잘 적용됨을 알 수 있다.

신경회로망을 이용한 동적 문턱값에 의한 비선형 시스템의 고장진단 (Fault Diagnosis of Nonlinear Systems Based on Dynamic Threshold Using Neural Network)

  • 소병석;이인수;전기준
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.968-973
    • /
    • 2000
  • Fault diagnosis plays an important role in the performance and safe operation of many modern engineering plants. This paper investigates the problem of fault detection using neural networks in dynamic systems. A general framework for constructing a nonlinear fault detection scheme for nonlinear dynamic systems containing modeling uncertaintly is proposed. The main idea behind the proposed approach is to monitor the physical system with an off -line learning neural network and then to approximate the upper and lower thresholds of acceleration of the nominal system with the model-based threshold(ThMB) method, The performance of the proposed fault detection scheme is investigated through simulations of a pendulum with uncertainty.

  • PDF

Diagnosis of Linear Systems with Structured Uncertainties based on Guaranteed State Observation

  • Planchon, Philippe;Lunze, Jan
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.306-319
    • /
    • 2008
  • Reaching fault tolerance in technological systems requires to detect malfunctions. This paper presents a diagnostic method that is robust with respect to unknown-but-bounded uncertainties of the dynamical model and the measurements. By using models of the faultless and the faulty behaviours, a state-set observer computes polyhedral sets from which the consistency of the models with the interval measurements is determined. The diagnostic result is proven to be complete, i.e., the set of faults obtained by the diagnostic algorithm includes the actual fault. The algorithm is illustrated by an application example.