• 제목/요약/키워드: Model-Based Fault Diagnosis

검색결과 220건 처리시간 0.03초

양자화된 진동신호를 이용한 모델기반 고장진단 (Model-based Fault Diagnosis Using Quantized Vibration Signals)

  • 김도현;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.279-284
    • /
    • 2005
  • Knowledge based fault diagnosis has a limitation in determining the cause and scheme for the fault, because it detects faults from signal pattern only Therefore, model-based fault diagnosis is requested to determine the fault by analyzing output of the equipment from its dynamic model. This research shows a method how to devise the automaton of system as a model for normal and faulty condition through the reduction of handling data by quantization of vibration signals and the example which is concerning to the bearing of ATM. The developed model based fault diagnosis was applied to detect the faulty bearing of ATM, which results.

  • PDF

Fault diagnosis based on likelihood decomposition

  • Uosaki, Katsuji;Kagawa, Tetsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.272-275
    • /
    • 1992
  • A novel fault diagnosis method based on likelihood decomposition is proposed for linear stochastic systems described by autoregressive (AR) model. Assuming that at some time instant .tau. the fault of one of the following two types is occurs: innovation fault (actuator fault); and observation fault (sensor fault), the log-likelihood function is decomposed into two components based on the observations before and after .tau., respectively, Then, the type of the fault is determined by comparing the log-likelihoods corresponding two types of faults. Numerical examples demonstrate the usefulness of the proposed diagnosis method.

  • PDF

RNN-based integrated system for real-time sensor fault detection and fault-informed accident diagnosis in nuclear power plant accidents

  • Jeonghun Choi;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.814-826
    • /
    • 2023
  • Sensor faults in nuclear power plant instrumentation have the potential to spread negative effects from wrong signals that can cause an accident misdiagnosis by plant operators. To detect sensor faults and make accurate accident diagnoses, prior studies have developed a supervised learning-based sensor fault detection model and an accident diagnosis model with faulty sensor isolation. Even though the developed neural network models demonstrated satisfactory performance, their diagnosis performance should be reevaluated considering real-time connection. When operating in real-time, the diagnosis model is expected to indiscriminately accept fault data before receiving delayed fault information transferred from the previous fault detection model. The uncertainty of neural networks can also have a significant impact following the sensor fault features. In the present work, a pilot study was conducted to connect two models and observe actual outcomes from a real-time application with an integrated system. While the initial results showed an overall successful diagnosis, some issues were observed. To recover the diagnosis performance degradations, additive logics were applied to minimize the diagnosis failures that were not observed in the previous validations of the separate models. The results of a case study were then analyzed in terms of the real-time diagnosis outputs that plant operators would actually face in an emergency situation.

부분최소제곱법 모델의 파라미터 추정을 이용한 화학공정의 이상진단 모델 개발 (The Development of a Fault Diagnosis Model based on the Parameter Estimations of Partial Least Square Models)

  • 이광오;이창준
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.59-67
    • /
    • 2019
  • Since it is really hard to construct process models based on prior process knowledges, various statistical approaches have been employed to build fault diagnosis models. However, the crucial drawback of these approaches is that the solutions may vary according to the fault magnitude, even if the same fault occurs. In this study, the parameter monitoring approach is suggested. When a fault occurs in a chemical process, this leads to trigger the change of a process model and the monitoring parameters of process models is able to provide the efficient fault diagnosis model. A few important variables are selected and their predictive models are constructed by partial least square (PLS) method. The Euclidean norms of parameters of PLS models are estimated and a fault diagnosis can be performed as comparing with parameters of PLS models based on normal operational conditions. To improve the monitoring performance, cumulative summation (CUSUM) control chart is employed and the changes of model parameters are recorded to identify the type of an unknown fault. To verify the efficacy of the proposed model, Tennessee Eastman (TE) process is tested and this model can be easily applied to other complex processes.

거동 반응을 이용한 전동공구 고장진단 (Fault Diagnosis of an Electric Tool using Automaton)

  • 이승목;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1328-1333
    • /
    • 2006
  • For fault diagnosis of machines and equipments, knowledge-based method has been used widely but has some limitations for complex systems. These can be covered by model-based method. As one kind of model-based method, Qualitative modeling diagnosis method is developed in this research. The developed method uses output signal only. In this method quantization of the output signal mattes automata which can characterize the flow of the signal pattern to normal and fault respectively. As an example of the qualitative diagnosis method, an electric tool which has faults at gear and bearing were examined in this research. The result shows that the developed method can diagnose the fault clearly for the two fault cases.

  • PDF

부호유향그래프와 동적 부분최소자승법에 기반한 화학공정의 다중이상진단 (Multiple-Fault Diagnosis for Chemical Processes Based on Signed Digraph and Dynamic Partial Least Squares)

  • 이기백;신동일;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.159-167
    • /
    • 2003
  • This study suggests the hybrid fault diagnosis method of signed digraph (SDG) and partial least squares (PLS). SDG offers a simple and graphical representation for the causal relationships between process variables. The proposed method is based on SDG to utilize the advantage that the model building needs less information than other methods and can be performed automatically. PLS model is built on local cause-effect relationships of each variable in SDG. In addition to the current values of cause variables, the past values of cause and effect variables are inputted to PLS model to represent the Process armies. The measured value and predicted one by dynamic PLS are compared to diagnose the fault. The diagnosis example of CSTR shows the proposed method improves diagnosis resolution and facilitates diagnosis of masked multiple-fault.

Imbalanced sample fault diagnosis method for rotating machinery in nuclear power plants based on deep convolutional conditional generative adversarial network

  • Zhichao Wang;Hong Xia;Jiyu Zhang;Bo Yang;Wenzhe Yin
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2096-2106
    • /
    • 2023
  • Rotating machinery is widely applied in important equipment of nuclear power plants (NPPs), such as pumps and valves. The research on intelligent fault diagnosis of rotating machinery is crucial to ensure the safe operation of related equipment in NPPs. However, in practical applications, data-driven fault diagnosis faces the problem of small and imbalanced samples, resulting in low model training efficiency and poor generalization performance. Therefore, a deep convolutional conditional generative adversarial network (DCCGAN) is constructed to mitigate the impact of imbalanced samples on fault diagnosis. First, a conditional generative adversarial model is designed based on convolutional neural networks to effectively augment imbalanced samples. The original sample features can be effectively extracted by the model based on conditional generative adversarial strategy and appropriate number of filters. In addition, high-quality generated samples are ensured through the visualization of model training process and samples features. Then, a deep convolutional neural network (DCNN) is designed to extract features of mixed samples and implement intelligent fault diagnosis. Finally, based on multi-fault experimental data of motor and bearing, the performance of DCCGAN model for data augmentation and intelligent fault diagnosis is verified. The proposed method effectively alleviates the problem of imbalanced samples, and shows its application value in intelligent fault diagnosis of actual NPPs.

Fault Diagnosis Method based on Feature Residual Values for Industrial Rotor Machines

  • Kim, Donghwan;Kim, Younhwan;Jung, Joon-Ha;Sohn, Seokman
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권2호
    • /
    • pp.89-99
    • /
    • 2018
  • Downtime and malfunction of industrial rotor machines represents a crucial cost burden and productivity loss. Fault diagnosis of this equipment has recently been carried out to detect their fault(s) and cause(s) by using fault classification methods. However, these methods are of limited use in detecting rotor faults because of their hypersensitivity to unexpected and different equipment conditions individually. These limitations tend to affect the accuracy of fault classification since fault-related features calculated from vibration signal are moved to other regions or changed. To improve the limited diagnosis accuracy of existing methods, we propose a new approach for fault diagnosis of rotor machines based on the model generated by supervised learning. Our work is based on feature residual values from vibration signals as fault indices. Our diagnostic model is a robust and flexible process that, once learned from historical data only one time, allows it to apply to different target systems without optimization of algorithms. The performance of the proposed method was evaluated by comparing its results with conventional methods for fault diagnosis of rotor machines. The experimental results show that the proposed method can be used to achieve better fault diagnosis, even when applied to systems with different normal-state signals, scales, and structures, without tuning or the use of a complementary algorithm. The effectiveness of the method was assessed by simulation using various rotor machine models.

진동데이터 적용 모델기반 이상진단 (Model-based Fault Diagnosis Applied to Vibration Data)

  • 양지혁;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1090-1095
    • /
    • 2012
  • In this paper, we propose a model-based fault diagnosis method applied to vibration data. The fault detection is performed by comparing estimated parameters with normal parameters and deciding if the observed changes can be explained satisfactorily in terms of noise or undermodelling. The key feature of this method is that it accounts for the effects of noise and model mismatch. And we aslo design a classifier for the fault isolation by applying the multiclass SVM (Support Vector Machine) to the estimated parameters. The proposed fault detection and isolation methods are applied to an engine vibration data to show a good performance. The proposed fault detection method is compared with a signal-based fault detection method through a performance analysis.

유전 알고리즘기반 퍼지 모델을 이용한 모터 고장 진단 자동화 시스템의 구현 (Implementation of Automated Motor Fault Diagnosis System Using GA-based Fuzzy Model)

  • 박태근;곽기석;윤태성;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.24-26
    • /
    • 2005
  • At present, KS-1000 which is one of a commercial measurement instrument for motor fault diagnosis has been used in industrial field. The measurement system of KS-1000 is composed of three part : harmonic acquisition, signal processing by KS-1000 algorithm, diagnosis for motor fault. First of all, voltage signal taken from harmonic sensor is analysed for frequency by KS-1000 algorithm. Then, based on the result values of analysis skilled expert makes a judgment about whether motor system is the abnormality or degradation state. But the expert system such a motor fault diagnosis is very difficult to bring the expectable results by mathematical modeling due to the complexity of judgment process. In this reason, we propose an automation system using fuzzy model based on genetic algorithm(GA) that builded a qualitative model of a system without priori knowledge about a system provided numerical input output data.

  • PDF