• Title/Summary/Keyword: Model-Based Decision Support Systems

Search Result 205, Processing Time 0.03 seconds

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

Development of an Intelligent Trading System Using Support Vector Machines and Genetic Algorithms (Support Vector Machines와 유전자 알고리즘을 이용한 지능형 트레이딩 시스템 개발)

  • Kim, Sun-Woong;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.71-92
    • /
    • 2010
  • As the use of trading systems increases recently, many researchers are interested in developing intelligent trading systems using artificial intelligence techniques. However, most prior studies on trading systems have common limitations. First, they just adopted several technical indicators based on stock indices as independent variables although there are a variety of variables that can be used as independent variables for predicting the market. In addition, most of them focus on developing a model that predicts the direction of the stock market indices rather than one that can generate trading signals for maximizing returns. Thus, in this study, we propose a novel intelligent trading system that mitigates these limitations. It is designed to use both the technical indicators and the other non-price variables on the market. Also, it adopts 'two-threshold mechanism' so that it can transform the outcome of the stock market prediction model based on support vector machines to the trading decision signals like buy, sell or hold. To validate the usefulness of the proposed system, we applied it to the real world data-the KOSPI200 index from May 2004 to December 2009. As a result, we found that the proposed system outperformed other comparative models from the perspective of 'rate of return'.

Performance assessment model for robot-based automated construction systems

  • Lee, Ung-Kyun;Yoo, Wi Sung;An, Sung-Hoon;Doh, Nakju;Cho, Hunhee;Jun, Changhyun;Kim, Taehoon;Lee, Young Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.416-423
    • /
    • 2013
  • An adjusted assessment model based on benefit-cost analysis (BCA) is proposed for evaluating the economic efficiency of automated construction technologies. In contrast to conventional BCA, the model does not compare monetary values, but the differences in benefits and costs between traditional and automated construction methods. To verify the usefulness of the model, it was applied to a real-scale building construction project that used a fully automated building construction system, and the face validity of the model was confirmed. The results indicate that the model can support decision makers in identifying valuable benefit factors and in assessing the cost effectiveness of the system.

Design and Empirical Study of an Online Education Platform Based on B2B2C, Focusing on the Perspective of Art Education

  • Hou, Shaopeng;Ahn, Jongchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.726-741
    • /
    • 2022
  • The purpose of this study is to provide instructive theoretical models for art (music) education institutions especially when unpredictable risks, such as pandemics, occur again. Based on the customer behavior theory of the business-to-business-to-customer (B2B2C) platform, and in combination with the technology acceptance model (TAM) and expectation confirmation model (ECM), this study proposes an online education model from the perspective of art education. The framework is based on the three decision-making processes of the customer, and includes the product owner, content owner, and customer area. This paper highlights the factors that influence customers in making decisions when art education institutions are product owners. Regression analysis was introduced to study the factors influencing the expectation confirmation, and the overall fitting testing and six hypotheses testing of 385 effective samples were performed using the structural equation modeling (SEM). The results show that the course-design and after-service positively influenced the expectation confirmation, and the domain image positively influenced the continuance behavior. Negative emotions skipped the mediator (expectation confirmation) and directly exerted a significant negative impact on customers' willingness to continue system usage (continuance behavior). In addition, expectation confirmation positively influenced continuance behavior. The paths of detailed items comprising course-design, after-service, and negative emotion were also analyzed and discussed. In this path analysis, ordinary art learners did not believe that AI partners can play a very good auxiliary role. The findings contribute to the scope of information systems acting as an art education platform academically, and provide effective and theoretical support for the actual operation of art education institutions.

Development of An On-line Scheduling Framework Based on Control Principles and its Computation Methodology Using Parametric Programming (실시간 일정계획 문제에 대한 Control 기반의 매개변수 프로그래밍을 이용한 해법의 개발)

  • Ryu, Jun-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1215-1219
    • /
    • 2006
  • Scheduling plays an important role in the process management in terms of providing profit-maximizing operation sequence of multiple orders and estimating completion times of them. In order to takes its full potential, varying conditions should be properly reflected in computing the schedule. The adjustment of scheduling decisions has to be made frequently in response to the occurrence of variations. It is often challenging because their model has to be adjusted and their solutions have to be computed within short time period. This paper employs Model Predictive Control(MPC) principles for updating the process condition in the scheduling model. The solutions of the resulting problems considering variations are computed using parametric programming techniques. The key advantage of the proposed framework is that repetition of solving similar programming problems with decreasing dimensionis avoided and all potential schedules are obtained before the execution of the actual processes. Therefore, the proposed framework contributes to constructing a robust decision-support tool in the face of varying environment. An example is solved to illustrate the potential of the proposed framework with remarks on potential wide applications.

FuzzyES for Environmental Risk Assessment of Ship Navigation (항행 선박 주변 환경의 위험도 평가를 위한 퍼지 전문가 시스템)

  • Kim, Do-Yeon;Yi, Mi-Ra;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.541-547
    • /
    • 2010
  • Marine accidents do not correspond with another accidents because of a serious loss of lives and property. The many marine accidents can be attributed to human error like as carelessness and decision faults, and hence there is a strong need for decision-support tools for marine navigation. Much of researchers have introduced the techniques about the tools, but they hardly consider environmental factors (water depth, the width of waterway, a fishing ground, a current, the number of surrounding marine accidents, marine obstacles, etc), which are very important to the decision making of officers. In a previous research, we proposed the conceptual model of environmental risk assessment of ship navigation using fuzzy. This paper describes the detailed design of the environmental factors based on the opinion of navigation experts, and shows the validity of the conceptual model through a prototype system.

Classification of the Diagnosis of Diabetes based on Mixture of Expert Model (Mixture of Expert 모형에 기반한 당뇨병 진단 분류)

  • Lee, Hong-Ki;Myoung, Sung-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.149-157
    • /
    • 2014
  • Diabetes is a chronic disease that requires continuous medical care and patient-self management education to prevent acute complications and reduce the risk of long-term complications. The worldwide prevalence and incidence of diabetes mellitus are reached epidemic proportions in most populations. Early detection of diabetes could help to prevent its onset by taking appropriate preventive measures and managing lifestyle. The major objective of this research is to develop an automated decision support system for detection of diabetes using mixture of experts model. The performance of the classification algorithms was compared on the Pima Indians diabetes dataset. The result of this study demonstrated that the mixture of expert model achieved diagnostic accuracies were higher than the other automated diagnostic systems.

A Study of Artificial Intelligence Learning Model to Support Military Decision Making: Focused on the Wargame Model (전술제대 결심수립 지원 인공지능 학습방법론 연구: 워게임 모델을 중심으로)

  • Kim, Jun-Sung;Kim, Young-Soo;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • Commander and staffs on the battlefield are aware of the situation and, based on the results, they perform military activities through their military decisions. Recently, with the development of information technology, the demand for artificial intelligence to support military decisions has increased. It is essential to identify, collect, and pre-process the data set for reinforcement learning to utilize artificial intelligence. However, data on enemies lacking in terms of accuracy, timeliness, and abundance is not suitable for use as AI learning data, so a training model is needed to collect AI learning data. In this paper, a methodology for learning artificial intelligence was presented using the constructive wargame model exercise data. First, the role and scope of artificial intelligence to support the commander and staff in the military decision-making process were specified, and to train artificial intelligence according to the role, learning data was identified in the Chang-Jo 21 model exercise data and the learning results were simulated. The simulation data set was created as imaginary sample data, and the doctrine of ROK Army, which is restricted to disclosure, was utilized with US Army's doctrine that can be collected on the Internet.

Examining the Moderating Effect of Involvement in the Internet Purchase Decision Process (인터넷 구매결정과정에서의 관여도의 조절효과에 관한 연구)

  • Kwahk, Kee-Young;Ji, So-Young
    • Asia pacific journal of information systems
    • /
    • v.18 no.2
    • /
    • pp.15-40
    • /
    • 2008
  • With the explosive growth of the Internet, Internet shopping malls have become recognized as one of the major purchasing channels for consumers, as well as one of the competitive distribution channels for companies that allow them to contact with customers without intermediaries. It has motivated information systems(IS) researchers to examine the factors influencing consumer behavior and the purchase decision process in the context of Internet shopping malls. Despite the extensive research that has been conducted on the purchase decision process of consumers in online shopping malls, the results have demonstrated a need for further understanding of consumer behavior due to the unique features of virtual space and the characteristics of online consumers. Previous studies from marketing and consumer behavior domains have suggested that the concept of involvement plays an important role in explaining consumers' purchase behavior. Despite the critical role of involvement and the explosive growth of e-commerce, little research has examined the role of involvement in the Internet shopping mall context. With this motivation, this study has two research objectives. First, it introduces and tests an theoretical model capable of better explaining consumers' intention to purchase in the Internet shopping mall context. The proposed model extends and integrates existing models on purchase intention by incorporating purchase experience, innovativeness, and perceived self-control as the consumer factors, along with perceived risk, information provision, and perceived price as the Internet shopping mall factors. Second, this study examines how involvement differences may affect consumers' intention to purchase. For this purpose, two factors from involvement theory, involvement type and involvement level, are introduced into the research model as moderating variables. In order to test the proposed model, the overall approach employed was a field study using the structural equation model. We developed our data collection instrument by adopting existing validated questions wherever possible. All question items were measured with a seven-point, Likert-type scale, with anchors ranging from 'strongly disagree' to 'strongly agree.' Two IS researchers reviewed the instrument and checked its face validity. We collected empirical data for this study over a period of two weeks from subjects who had purchase experiences through Internet shopping malls. A total of 473 complete and valid responses were obtained. We carried out data analysis using a two-step methodology with AMOS 4.0. The first step in the data analysis was to establish the convergent and discriminant validity of the constructs. In the second step, we examined the structural model based on the cleansed measurement model. The empirical results partly support the proposed model and identify the moderating effect of involvement differences. Theoretical and practical implications of the study are discussed, along with its limitations.

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.