• 제목/요약/키워드: Model verification

검색결과 3,333건 처리시간 0.026초

나로호 킥모터 TVC 노즐 행정확인시험 및 특성 분석 (Stroke Verification Test and Operational Characteristics Analysis of KSLV-I Kick Motor TVC Nozzle)

  • 선병찬;박용규;오충석;노웅래
    • 항공우주기술
    • /
    • 제11권1호
    • /
    • pp.158-168
    • /
    • 2012
  • 본 논문에서는 나로호 2단 킥모터 TVC 노즐에 대한 행정확인시험 방법과 행정확인시험 데이터로부터 TVC 운용 특성을 분석하는 과정 및 결과에 대해 다루었다. 개루프 행정확인 시험을 통해 TVC 스트로크와 포텐셔미터 전압 간의 관계를 분석하고, 폐루프 행정확인시험을 통해 노즐정렬오차, TVC 구동오차, TVC 중립위치, 플렉스씰 노즐의 회전중심위치, 비행시험후 분석에 사용할 노즐각 환산계수 등을 분석할 수 있음을 보였다. 아울러, 나로호 1호기 및 2호기 TVC 시스템에 대해 행정확인시험을 수행한 결과 TVC 운용 관련 모든 파라미터가 정상 범위 내에서 설정되었음을 정량적인 수치로써 제시하였다.

제어흐름 에러 탐지를 위한 분리형 시그니처 모니터링 기법 (Separate Signature Monitoring for Control Flow Error Detection)

  • 최기호;박대진;조정훈
    • 대한임베디드공학회논문지
    • /
    • 제13권5호
    • /
    • pp.225-234
    • /
    • 2018
  • Control flow errors are caused by the vulnerability of memory and result in system failure. Signature-based control flow monitoring is a representative method for alleviating the problem. The method commonly consists of two routines; one routine is signature update and the other is signature verification. However, in the existing signature-based control flow monitoring, monitoring target application is tightly combined with the monitoring code, and the operation of monitoring in a single thread is the basic model. This makes the signature-based monitoring method difficult to expect performance improvement that can be taken in multi-thread and multi-core environments. In this paper, we propose a new signature-based control flow monitoring model that separates signature update and signature verification in thread level. The signature update is combined with application thread and signature verification runs on a separate monitor thread. In the proposed model, the application thread and the monitor thread are separated from each other, so that we can expect a performance improvement that can be taken in a multi-core and multi-thread environment.

Verification of Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE)

  • Khuwaileh, Bassam;Williams, Brian;Turinsky, Paul;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.968-976
    • /
    • 2019
  • This paper presents a number of verification case studies for a recently developed sensitivity/uncertainty code package. The code package, ROMUSE (Reduced Order Modeling based Uncertainty/Sensitivity Estimator) is an effort to provide an analysis tool to be used in conjunction with reactor core simulators, in particular the Virtual Environment for Reactor Applications (VERA) core simulator. ROMUSE has been written in C++ and is currently capable of performing various types of parameter perturbations and associated sensitivity analysis, uncertainty quantification, surrogate model construction and subspace analysis. The current version 2.0 has the capability to interface with the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) code, which gives ROMUSE access to the various algorithms implemented within DAKOTA, most importantly model calibration. The verification study is performed via two basic problems and two reactor physics models. The first problem is used to verify the ROMUSE single physics gradient-based range finding algorithm capability using an abstract quadratic model. The second problem is the Brusselator problem, which is a coupled problem representative of multi-physics problems. This problem is used to test the capability of constructing surrogates via ROMUSE-DAKOTA. Finally, light water reactor pin cell and sodium-cooled fast reactor fuel assembly problems are simulated via SCALE 6.1 to test ROMUSE capability for uncertainty quantification and sensitivity analysis purposes.

Formal Verification of Twin Clutch Gear Control System

  • Muhammad Zaman;Amina Mahmood;Muhammad Atif;Muhammad Adnan Hashmi;Muhammad Kashif;Mudassar Naseer
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.151-159
    • /
    • 2024
  • Twin clutch model enables the power-shifts as conventional planetary automatic transmission and eradicates the disadvantages of single clutch trans- mission. The automatic control of the dual clutches is a problem. Particularly to control the clutching component that engages when running in one direction of revolution and disengages when running the other direction, which exchange the torque smoothly during torque phase of the gearshifts on planetary-type automatic transmissions, seemed for quite a while hard to compensate through clutch control. Another problem is to skip gears during multiple gearshifts. However, the twin clutch gear control described in ["M Goetz, M C Levesley and D A Crolla. Dynamics and control of gearshifts on twin clutch transmissions, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2005"], a significant improvement in twin clutch gear control system is discussed. In this research our objective is to formally specify the twin clutch gear control system and verify it with the help of formal methods. Formal methods have a high potential to give correctness estimating techniques. We use UPPAAL for formal specification and verification. Our results show that the twin clutch gear control model partially fulfills its functional requirements.

A PARAMETRIC SENSITIVITY STUDY OF GDI SPRAY CHARACTERISTICS USING A 3-D TRANSIENT MODEL

  • Comer, M.A.;Bowen, P.J.;Sapsford, S.M.;Kwon, S.I.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.145-153
    • /
    • 2004
  • Potential fuel economy improvements and environmental legislation have renewed interest in Gasoline Direct Injection (GDI) engines. Computational models of fuel injection and mixing processes pre-ignition are being developed for engine optimisation. These highly transient thermofluid models require verification against temporally and spatially resolved data-sets. The authors have previously established the capability of PDA to provide suitable temporally and spatially resolved spray characteristics such as mean droplet size, velocity components and qualitative mass distribution. This paper utilises this data-set to assess the predictive capability of a numerical model for GDI spray prediction. After a brief description of the two-phase model and discretisation sensitivity, the influence of initial spray conditions is discussed. A minimum of 5 initial global spray characteristics are required to model the downstream spray characteristics adequately under isothermal, atmospheric conditions. Verification of predicted transient spray characteristics such as the hollow-cone, cone collapse, head vortex, stratification and penetration are discussed, and further improvements to modelling GDI sprays proposed.

담수호 저층배수시설 방류구 위치선정을 위한 저층방류수 해양수중 혼합특성해석

  • 박영욱;구본충;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.272-277
    • /
    • 2005
  • Initial mixing characteristics in near field regions were analyzed by FLOW-3D, for analyzing mixing behavior of submerged discharge from freshwater lake in sea water. FLOW-3D model was applied to the region near Geum-ho dike for its verification. Simulation results from FLOW-3D were compared to the observed data for the verification periods. FLOW-3D showed resonable prediction results compared to the observed data, except underestimation in area near outfall. Particularly, FLOW-3D showed a good prediction for movement of buoyancy jets. In addition, FLOW-3D model was applied to the region near Saemangeum dike, which is to be constructed in near future. It was expected that the results of model application to Saemangeum area could provide substantial information in planning submerged discharge facilities. Based on the model applications to Saemangeum area, it was recommended that outfall should be located to the distance which gave an enough depth of outfall from water surface.

  • PDF

PLDA 모델 적응과 데이터 증강을 이용한 짧은 발화 화자검증 (Short utterance speaker verification using PLDA model adaptation and data augmentation)

  • 윤성욱;권오욱
    • 말소리와 음성과학
    • /
    • 제9권2호
    • /
    • pp.85-94
    • /
    • 2017
  • Conventional speaker verification systems using time delay neural network, identity vector and probabilistic linear discriminant analysis (TDNN-Ivector-PLDA) are known to be very effective for verifying long-duration speech utterances. However, when test utterances are of short duration, duration mismatch between enrollment and test utterances significantly degrades the performance of TDNN-Ivector-PLDA systems. To compensate for the I-vector mismatch between long and short utterances, this paper proposes to use probabilistic linear discriminant analysis (PLDA) model adaptation with augmented data. A PLDA model is trained on vast amount of speech data, most of which have long duration. Then, the PLDA model is adapted with the I-vectors obtained from short-utterance data which are augmented by using vocal tract length perturbation (VTLP). In computer experiments using the NIST SRE 2008 database, the proposed method is shown to achieve significantly better performance than the conventional TDNN-Ivector-PLDA systems when there exists duration mismatch between enrollment and test utterances.

Verification of a Dynamic Compartment Model for the Tritium Behavior in the Plants After Short HTO Release Using a BIOMOVS II Scenario

  • Park, Heui-Joo;Kang, Hee-Suk;Lee, Hansoo
    • Nuclear Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.171-177
    • /
    • 2003
  • A dynamic compartment model was required for the prediction of radiological consequences of the tritiated vapor released from the nuclear facility after an accident. A computer code, ECOREA-T, was developed by incorporating the unit models for the evaluation of tritium behavior in the environment. Dry deposition of tritiated vapor from the atmosphere to the soil was calculated using a deposition velocity. Transport of tritium from the atmosphere to the plant was calculated using a specific activity model, and the result was compared with the Belot's analytic solution. Root uptake of tritiated water from the soil and formation of OBT from T were considered in the model. The ECOREA-T code was verified by comparing the results from the other computer codes using a scenario developed through BIOMOVS II study. The results showed good agreements.

가상하도 내에서 2차원 흐름분석을 통한 오염원의 유입 지점 탐색 (Detecting Water Pollution Source based on 2D fluid Analysis in Virtual Channel)

  • 연인성;조용진
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.30-35
    • /
    • 2011
  • 2D pollutant transport model was applied to the simulation of contaminant transport in the channel. At first, two kinds of virtual channels having different slopes were designed. The distribution of contaminant, which flows from one of the three drainages to the main channel, was simulated by each 2D model. Concentrations of 745 nodes were converted to input data of neural network model (Multi-perceptron) for training and verification using matrix. The first three cases (Case A-1, A-2, A-3) were used for training Multi-perceptron, the other three cases (Case B-1, B-2, B-3) were used for verification. As a result, Multi-perceptron reasonably divided the cases into the three characteristics which have different contaminant distributions due to the different input point of water pollution source. It can be a useful methodology for the water quality monitoring and backtracking.

LTS Semantics Model of Event-B Synchronization Control Flow Design Patterns

  • Peng, Han;Du, Chenglie;Rao, Lei;Liu, Zhouzhou
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.570-592
    • /
    • 2019
  • The Event-B design pattern is an excellent way to quickly develop a formal model of the system. Researchers have proposed a number of Event-B design patterns, but they all lack formal behavior semantics. This makes the analysis, verification, and simulation of the behavior of the Event-B model very difficult, especially for the control-intensive systems. In this paper, we propose a novel method to transform the Event-B synchronous control flow design pattern into the labeled transition system (LTS) behavior model. Then we map the design pattern instantiation process of Event-B to the instantiation process of LTS model and get the LTS behavior semantic model of Event-B model of a multi-level complex control system. Finally, we verify the linear temporal logic behavior properties of the LTS model. The experimental results show that the analysis and simulation of system behavior become easier and the verification of the behavior properties of the system become convenient after the Event-B model is converted to the LTS model.