• 제목/요약/키워드: Model validation

검색결과 3,241건 처리시간 0.029초

측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석 (SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE-FLOW)

  • 이병우;박원규;이건철
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.78-85
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

오목한 반구면의 Jet Impingement/Effusion Hole 주변 유동 특성에 대한 실험과 시뮬레이션의 비교 (Comparison of Experimental and Simulation Results for Flow Characteristics around Jet Impingement/Effusion Hole in Concave Hemispherical Surface)

  • 윤성지;서희림;염은섭
    • 한국가시화정보학회지
    • /
    • 제20권2호
    • /
    • pp.28-37
    • /
    • 2022
  • Flow characteristics of jet impingement over concave hemispherical surface with effusion cooling holes is relatively more complex than that of a flat surface, so the experimental validation for computational fluid dynamics (CFD) results is important. In this study, experimental results were compared with simulation results obtained by assuming different turbulence models. The vortex was observed in the region between the central jets where the recirculation structure appeared. The different patterns of vorticity distributions were observed for each turbulence models due to different interaction of the injected jet flow. Among them, the transition k-kl-ω model predicted similarly not only the jet potential core region with higher velocity, but also the recirculation region between the central jets. From the validation, it may be helpful to accurately predict heat and mass transfer in jet impingement/effusion hole system.

Structure Prediction of Gasdermin a Receptor by Homology Modelling

  • Subathra Selvam
    • 통합자연과학논문집
    • /
    • 제16권3호
    • /
    • pp.97-102
    • /
    • 2023
  • The gasdermins are a family of recently identified pore-forming effector proteins that cause membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. A role in the regulation of cell proliferation and/or differentiation is suggested by the differentiation status-specific expression of gasdermin proteins in epithelial tissues. One of the GSDM protein is Gasdermin A (GSDMA), which decreased in stomach and esophageal cancers, suggesting a tumor suppressor role. GSDMA receptor antagonists have been researched as potential treatments for inflammatory diseases and baldness. GSDMA's significance in a wide range of disorders makes it an important therapeutic target. As a result, homology modelling of the GSDMA receptor was undertaken in the current study using the crystal structures of Mus musculus (GSDMA3), Human gasdermin D (GSDMD), and Murine gasdermin D (murine GSDMD). The best model was chosen based on the validation results after 20 models were developed utilising single template-based approaches. The generated structures can be used for further binding site and docking studies in the future.

지원벡터기계를 이용한 출혈을 일으킨 흰쥐에서의 생존 예측 (Survival Prediction of Rats with Hemorrhagic Shocks Using Support Vector Machine)

  • 장경환;최재림;유태근;권민경;김덕원
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Hemorrhagic shock is a common cause of death in emergency rooms. Early diagnosis of hemorrhagic shock makes it possible for physicians to treat patients successfully. Therefore, the purpose of this study was to select an optimal survival prediction model using physiological parameters for the two analyzed periods: two and five minutes before and after the bleeding end. We obtained heart rates, mean arterial pressures, respiration rates and temperatures from 45 rats. These physiological parameters were used for the training and testing data sets of survival prediction models using an artificial neural network (ANN) and support vector machine (SVM). We applied a 5-fold cross validation method to avoid over-fitting and to select the optimal survival prediction model. In conclusion, SVM model showed slightly better accuracy than ANN model for survival prediction during the entire analysis period.

Parametric Study of Numerical Prediction of Slamming and Whipping and an Experimental Validation for a 10,000-TEU Containership

  • Kim, Jung-Hyun;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.115-133
    • /
    • 2015
  • This paper describes an approach for the numerical analysis of container ship slamming and whipping and various parameters that influence slamming and whipping. For validation purposes, the numerical analysis results were compared with experimental results obtained as part of the Wave-Induced Loads on Ships Joint Industry Project. Water entry problems for two-dimensional (2D) sections were first solved using a 2D generalized Wagner model (GWM) for various drop conditions and geometries. As the next step, the hydroelastic numerical analysis of a 10,000-TEU container ship subjected to slamming and whipping loads in waves was performed. The analysis method used is based on a fully coupled model consisting of a three-dimensional (3D) Rankine panel model, a 3D finite element model (FEM), and a 2D GWM, which are strongly coupled in the time domain. Parametric studies were carried out in both numerical and experimental tests with various forward speeds, wave heights, and wave periods. The trends observed and the validity of the numerical analysis results are discussed.

초음속 노즐 유동의 최적해석을 위한 난류모델의 평가와 선정 (Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow)

  • 감호동;김정수
    • 한국추진공학회지
    • /
    • 제17권1호
    • /
    • pp.18-25
    • /
    • 2013
  • 초음속 축소-확대 노즐 유동을 정확하게 해석하기 위하여, 실험치와 해석값 사이의 비교를 통해 난류모델 성능평가를 수행한다. Boussinesq 가정을 적용한 RANS 방정식으로 2차원 노즐 유동을 해석하되, Spalart-Allmaras, RNG k-${\varepsilon}$, 그리고 k-${\omega}$ SST 난류모델을 평가에 사용한다. 각 모델들로 계산된 노즐 벽면의 압력구배 및 충격파 구조는 실험 데이터와 유사한 결과를 보였는데, 그 중에서도 SST 난류모델이 실험값에 가장 근접한 해석결과를 나타내었다.

공정 중심 시뮬레이션 모델링 방법론을 이용한 조선소 생산 시뮬레이션 시스템: 중일정계획 검증 시뮬레이션 모델 구축 사례를 중심으로 (A Shipyard Simulation System using the Process-centric Simulation Modeling Methodology: Case Study of the Simulation Model for the Shipyard Master Plan Validation)

  • 정용국;우종훈;오대균;신종계
    • 한국CDE학회논문집
    • /
    • 제21권2호
    • /
    • pp.204-214
    • /
    • 2016
  • Shipbuilding process takes a long time for producing final products, and needs many different resources. Because of these characteristics, it has been studied about shipyard simulation and virtual manufacturing that is able to implement the virtual manufacturing process. However, among the previous researches, it requires considerable time and effort to construct simulation model since the systematic methodology has not been used for simulation modeling. Also, reusability of constructed simulation model was low. Therefore, this research defines the method to construct shipyard simulation system using the process-centric simulation modeling methodology and shipyard simulation framework. This paper also validates the utility of this methodology through applying to construct simulation model for the shipyard master plan validation.

SEBAL모형을 이용한 증발산량의 추정 금강 상류지역을 대상으로 (Estimation of Evapotranspiration with SEBAL Model in the Geumgang Upper Basin, Korea)

  • 유진웅
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.517-522
    • /
    • 2003
  • 증발산량의 정확한 산정은 자연현상과 인문현상을 이해하는데 있어 중요하다. 증발산량의 점추정이 갖는 한계를 극복하기 위해 원격탐사를 이용하여 증발산량을 추정하는 방법이 활발히 연구되고 있다. 이 중 SEBAL 모형은 원격탐사 자료를 이용하는 기존의 방법에 비해 소요되는 자료가 적으면서도, 증발산량을 정확하게 추정하는 방법으로 알려지고 있다. 이 연구에서는 우리나라 지형에서 SEBAL 모형의 적용 가능성을 검증하였고, 증발산량 분포의 시공간적 특성을 살펴보았다. 연구 지역은 금강 상류의 보청천 유역이며, Landsat 5 TM영상(1995년 1월 11일, 4월 1일, 5월 3일, 10월 10일, 11월 27일)을 이용하였다.

  • PDF

A water treatment case study for quantifying model performance with multilevel flow modeling

  • Nielsen, Emil K.;Bram, Mads V.;Frutiger, Jerome;Sin, Gurkan;Lind, Morten
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.532-541
    • /
    • 2018
  • Decision support systems are a key focus of research on developing control rooms to aid operators in making reliable decisions and reducing incidents caused by human errors. For this purpose, models of complex systems can be developed to diagnose causes or consequences for specific alarms. Models applied in safety systems of complex and safety-critical systems require rigorous and reliable model building and testing. Multilevel flow modeling is a qualitative and discrete method for diagnosing faults and has previously only been validated by subjective and qualitative means. To ensure reliability during operation, this work aims to synthesize a procedure to measure model performance according to diagnostic requirements. A simple procedure is proposed for validating and evaluating the concept of multilevel flow modeling. For this purpose, expert statements, dynamic process simulations, and pilot plant experiments are used for validation of simple multilevel flow modeling models of a hydrocyclone unit for oil removal from produced water.

Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

  • Bhowmik, Subrata;Weber, Felix;Hogsberg, Jan
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.673-693
    • /
    • 2013
  • This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.