• 제목/요약/키워드: Model validation

검색결과 3,155건 처리시간 0.033초

순차적 크리깅모델의 평균-분산 정확도 검증기법 (Mean-Variance-Validation Technique for Sequential Kriging Metamodels)

  • 이태희;김호성
    • 대한기계학회논문집A
    • /
    • 제34권5호
    • /
    • pp.541-547
    • /
    • 2010
  • 메타모델의 정확도를 엄밀하게 검증하는 것은 메타모델링에서 중요한 연구주제이다. k 점 선택교차검증기법이 많은 계산시간을 요구하면서도 메타모델의 정확도를 정략적으로 측정하지 못한다. 최근들어, 평균 $_0$ 기준이 메타모델의 정확도를 정량적으로 제공하기 위하여 제안되었다. 그러나 평균 $_0$ 검증 기준은 크리깅 메타모델이 부정확함에도 불구하고 일찍 수렴하는 경향이 있다. 따라서 본 연구에서는 최대엔트로피를 이용한 순차적 실험계획에서 크리깅모델의 평균과 분산을 이용한 정확도 평가기법을 제안한다. 이 제안한 기법은 평균 및 분산을 계산할 때 수치해석으로 구하는 것이 아니라 크리깅메타모델을 직접 적분하여 구하기 때문에 k 점 선택교차검증기법보다 효율적이며 정확하다. 제안한 기준은 실제 응답의 평균제곱오차의 경향과 매우 유사하여 순차적 실험계획의 수렴기준으로 사용할 수 있다.

Diagnostic In Spline Regression Model With Heteroscedasticity

  • Lee, In-Suk;Jung, Won-Tae;Jeong, Hye-Jeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제6권1호
    • /
    • pp.63-71
    • /
    • 1995
  • We have consider the study of local influence for smoothing parameter estimates in spline regression model with heteroscedasticity. Practically, generalized cross-validation does not work well in the presence of heteroscedasticity. Thus we have proposed the local influence measure for generalized cross-validation estimates when errors are heteroscedastic. And we have examined effects of diagnostic by above measures through Hyperinflation data.

  • PDF

추정모델에 의한 화력발전 플랜트 계측데이터의 검증 및 유효화 (Estimation Model-based Verification and Validation of Fossil Power Plant Performance Measurement Data)

  • 김성근;윤문철;최영석
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.114-120
    • /
    • 2000
  • Fossil power plant availability is significantly affected by gradual degradations of equipment as operation of the plant continues. It is quite important to determine whether or not to replace some equipment and when to replace the equipment. Performance calculation and analysis can provide the information. Robustness in the performance calculation can be increased by using verification & validation of measured input data. We suggest new algorithm in which estimation relation for validated measurement can be obtained using correlation between measurements. Input estimation model is obtained using design data and acceptance measurement data of domestic 16 fossil power plant. The model consists of finding mostly correlated state variable in plant state and mapping relation based on the model and current state of power plant.

  • PDF

Cox proportional hazard model with L1 penalty

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.613-618
    • /
    • 2011
  • The proposed method is based on a penalized log partial likelihood of Cox proportional hazard model with L1-penalty. We use the iteratively reweighted least squares procedure to solve L1 penalized log partial likelihood function of Cox proportional hazard model. It provide the ecient computation including variable selection and leads to the generalized cross validation function for the model selection. Experimental results are then presented to indicate the performance of the proposed procedure.

인공지능 데이터 품질검증 기술 및 오픈소스 프레임워크 분석 연구 (An Evaluation Study on Artificial Intelligence Data Validation Methods and Open-source Frameworks)

  • 윤창희;신호경;추승연;김재일
    • 한국멀티미디어학회논문지
    • /
    • 제24권10호
    • /
    • pp.1403-1413
    • /
    • 2021
  • In this paper, we investigate automated data validation techniques for artificial intelligence training, and also disclose open-source frameworks, such as Google's TensorFlow Data Validation (TFDV), that support automated data validation in the AI model development process. We also introduce an experimental study using public data sets to demonstrate the effectiveness of the open-source data validation framework. In particular, we presents experimental results of the data validation functions for schema testing and discuss the limitations of the current open-source frameworks for semantic data. Last, we introduce the latest studies for the semantic data validation using machine learning techniques.

Evaluation and validation of stem volume models for Quercus glauca in the subtropical forest of Jeju Island, Korea

  • Seo, Yeon Ok;Lumbres, Roscinto Ian C.;Won, Hyun Kyu;Jung, Sung Cheol;Lee, Young Jin
    • Journal of Ecology and Environment
    • /
    • 제38권4호
    • /
    • pp.485-491
    • /
    • 2015
  • This study was conducted to develop stem volume models for the volume estimation of Quercus glauca Thunb. in Jeju Island, Republic of Korea. Furthermore, this study validated the developed stem volume models using an independent dataset. A total of 167 trees were measured for their diameter at breast height (DBH), total height and stem volume using non-destructive sampling methods. Eighty percent of the dataset was used for the initial model development while the remaining 20% was used for model validation. The performance of the different models was evaluated using the following fit statistics: standard error of estimate (SEE), mean bias absolute mean deviation (AMD), coefficient of determination (R2), and root mean square error (RMSE). The AMD of the five models from the different DBH classes were determined using the validation dataset. Model 5 (V = aDbHc), which estimates volume using DBH and total height as predicting variables, had the best SEE (0.02745), AMD (0.01538), R2 (0.97603) and RMSE (0.02746). Overall, volume models with two independent variables (DBH and total height) performed better than those with only one (DBH) based on the model evaluation and validation. The models developed in this study can provide forest managers with accurate estimations for the stem volumes of Quercus glauca in the subtropical forests of Jeju Island, Korea.

복합형 유역모델 STREAM의 개발(II): 모델의 시험 적용 (Development of a Hybrid Watershed Model STREAM: Test Application of the Model)

  • 조홍래;정의상;구본경
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.507-522
    • /
    • 2015
  • In this study, some of the model verification results of STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model), a newly-developed hybrid watershed model, are presented for the runoff processes of nonpoint source pollution. For verification study of STREAM, the model was applied to a test watershed and a sensitivity analysis was also carried out for selected parameters. STREAM was applied to the Mankyung River Watershed to review the applicability of the model in the course of model calibration and validation against the stream flow discharge, suspended sediment discharge and some water quality items (TOC, TN, TP) measured at the watershed outlet. The model setup, simulation and data I/O modules worked as designed and both of the calibration and validation results showed good agreement between the simulated and the measured data sets: NSE over 0.7 and $R^2$ greater than 0.8. The simulation results also include the spatial distribution of runoff processes and watershed mass balance at the watershed scale. Additionally, the irrigation process of the model was examined in detail at reservoirs and paddy fields.

Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model

  • Mezquida-Alcaraz, Eduardo J.;Navarro-Gregori, Juan;Lopez, Juan Angel;Serna-Ros, Pedro
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.11-23
    • /
    • 2019
  • Nowadays, the characterization of Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) tensile behavior still remains a challenge for researchers. For this purpose, a simplified closed-form non-linear hinge model based on the Third Point Bending Test (ThirdPBT) was developed by the authors. This model has been used as the basis of a simplified inverse analysis methodology to derive the tensile material properties from load-deflection response obtained from ThirdPBT experimental tests. In this paper, a non-linear finite element model (FEM) is presented with the objective of validate the closed-form non-linear hinge model. The state determination of the closed-form model is straightforward, which facilitates further inverse analysis methodologies to derive the tensile properties of UHPFRC. The accuracy of the closed-form non-linear hinge model is validated by a robust non-linear FEM analysis and a set of 15 Third-Point Bending tests with variable depths and a constant slenderness ratio of 4.5. The numerical validation shows excellent results in terms of load-deflection response, bending curvatures and average longitudinal strains when resorting to the discrete crack approach.

원전 터빈사이클 성능 데이터의 검증 모델에 의한 성능분석 기법의 개발 (Development of Performance Analysis Methodology for Nuclear Power Plant Turbine Cycle Using Validation Model of Performance Measurements)

  • 김성근;최광희
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1625-1634
    • /
    • 2000
  • Verification of measurements is required for precise evaluation of turbine cycle performance in nuclear power plant. We assumed that initial acceptance data and design data of the plant could provide correlation information between performance data. The data can be used as sample sets for the correct estimation model of measurement value. The modeling was done practically by using regression model based on plant design data, plant acceptance data and verified plant performance data of domestic nuclear power plant. We can construct more robust performance analysis system for an operation nuclear power plant with this validation scheme.

Validation of a CFD model for hydraulic seals

  • Roy, Vincent Le;Guibault, Francois;Vu, Thi C.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.400-408
    • /
    • 2009
  • Optimization of seal geometries can reduce significantly the energetic losses in a hydraulic seal [1], especially for high head runner turbine. In the optimization process, a reliable prediction of the losses is needed and CFD is often used. This paper presents numerical experiments to determine an adequate CFD model for straight, labyrinth and stepped hydraulic seals used in Francis runners. The computation is performed with a finite volume commercial CFD code with a RANS low Reynolds turbulence model. As numerical computations in small radial clearances of hydraulic seals are not often encountered in the literature, the numerical results are validated with experimental data on straight seals and labyrinth seals. As the validation is satisfactory enough, geometrical optimization of hydraulic seals using CFD will be studied in future works.