• Title/Summary/Keyword: Model uncertainty

Search Result 2,325, Processing Time 0.033 seconds

Application of Rainfall Runoff Model with Rainfall Uncertainty (강우자료의 불확실성을 고려한 강우 유출 모형의 적용)

  • Lee, Hyo-Sang;Jeon, Min-Woo;Balin, Daniela;Rode, Michael
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.773-783
    • /
    • 2009
  • The effects of rainfall input uncertainty on predictions of stream flow are studied based extended GLUE (Generalized Likelihood Uncertainty Estimation) approach. The uncertainty in the rainfall data is implemented by systematic/non-systematic rainfall measurement analysis in Weida catchment, Germany. PDM (Probability Distribution Model) rainfall runoff model is selected for hydrological representation of the catchment. Using general correction procedure and DUE(Data Uncertainty Engine), feasible rainfall time series are generated. These series are applied to PDM in MC(Monte Carlo) and GLUE method; Posterior distributions of the model parameters are examined and behavioural model parameters are selected for simplified GLUE prediction of stream flow. All predictions are combined to develop ensemble prediction and 90 percentile of ensemble prediction, which are used to show the effects of uncertainty sources of input data and model parameters. The results show acceptable performances in all flow regime, except underestimation of the peak flows. These results are not definite proof of the effects of rainfall uncertainty on parameter estimation; however, extended GLUE approach in this study is a potential method which can include major uncertainty in the rainfall-runoff modelling.

The Explicit Treatment of Model Uncertainties in the Presence of Aleatory and Epistemic Parameter Uncertainties in Risk and Reliability Analysis

  • Ahn, Kwang-ll;Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.64-79
    • /
    • 2003
  • In the risk and reliability analysis of complex technological systems, the primary concern of formal uncertainty analysis is to understand why uncertainties arise, and to evaluate how they impact the results of the analysis. In recent times, many of the uncertainty analyses have focused on parameters of the risk and reliability analysis models, whose values are uncertain in an aleatory or an epistemic way. As the field of parametric uncertainty analysis matures, however, more attention is being paid to the explicit treatment of uncertainties that are addressed in the predictive model itself as well as the accuracy of the predictive model. The essential steps for evaluating impacts of these model uncertainties in the presence of parameter uncertainties are to determine rigorously various sources of uncertainties to be addressed in an underlying model itself and in turn model parameters, based on our state-of-knowledge and relevant evidence. Answering clearly the question of how to characterize and treat explicitly the forgoing different sources of uncertainty is particularly important for practical aspects such as risk and reliability optimization of systems as well as more transparent risk information and decision-making under various uncertainties. The main purpose of this paper is to provide practical guidance for quantitatively treating various model uncertainties that would often be encountered in the risk and reliability modeling process of complex technological systems.

A Methodology on Treating Uncertainty of LCI Data using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 LCI data 불활실성 처리 방법론)

  • Park Ji-Hyung;Seo Kwang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.109-118
    • /
    • 2004
  • Life cycle assessment (LCA) usually involves some uncertainty. These uncertainties are generally divided in two categories such lack of data and data inaccuracy in life cycle inventory (LCI). This paper explo.es a methodology on dealing with uncertainty due to lack of data in LCI. In order to treat uncertainty of LCI data, a model for data uncertainty is proposed. The model works with probabilistic curves as inputs and with Monte Carlo Simulation techniques to propagate uncertainty. The probabilistic curves were derived from the results of survey in expert network and Monte Carlo Simulation was performed using the derived probabilistic curves. The results of Monte Carlo Simulation were verified by statistical test. The proposed approach should serve as a guide to improve data quality and deal with uncertainty of LCI data in LCA projects.

Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique (Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석)

  • Choi, Jeonghyeon;Jang, Suhyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.

Uncertainty assessment caused by GCMs selection on hydrologic studies

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.151-151
    • /
    • 2018
  • The present study is aimed to quantifying the uncertainty in the general circulation model (GCM) selection and its impacts on hydrology studies in the basins. For this reason, 13 GCMs was selected among the 26 GCM models of the Fifth Assessment Report (AR5) scenarios. Then, the climate data and hydrologic data with two Representative Concentration Pathways (RCPs) of the best model (INMCM4) and worst model (HadGEM2-AO) were compared to understand the uncertainty associated with GCM models. In order to project the runoff, the Precipitation-Runoff Modelling System (PRMS) was driven to simulate daily river discharge by using daily precipitation, maximum and minimum temperature as inputs of this model. For simulating the discharge, the model has been calibrated and validated for daily data. Root mean square error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were applied as evaluation criteria. Then parameters of the model were applied for the periods 2011-2040, and 2070-2099 to project the future discharge the five large basins of South Korea. Then, uncertainty caused by projected temperature, precipitation and runoff changes were compared in seasonal and annual time scale for two future periods and RCPs compared to the reference period (1976-2005). The findings of this study indicated that more caution will be needed for selecting the GCMs and using the results of the climate change analysis.

  • PDF

Economic Policy Uncertainty and Korean Economy : Focusing on Distribution Industry Stock Market

  • Jeon, Ji-Hong;Lee, Hyun-Ho;Lee, Chang-Min
    • Journal of Distribution Science
    • /
    • v.15 no.12
    • /
    • pp.41-51
    • /
    • 2017
  • Purpose - This study proposes the impact of the US and Korean economic policy uncertainty on macroeconomy, and its effect on Korea. The economic policy uncertainty index of the US and Korea is used to represent the economic policy uncertainty on Korean economy. Research design, data, and methodology - In this paper, we collect the eight variables to find out the interrelationship among the US and Korean economic policy uncertainty index of the US and macroeconomic indicators during 1990 to 2016, and use Vector Error Correction Model. Result - The distribution industry stock index in Korea is influenced by the economic policy uncertainty index of the US rather than of Korea. All variables are related negatively to the economic policy uncertainty index of the US and Korea from Vector Error Correction Model. This study shows that the economic policy uncertainty index of the US and Korea has the dynamic relationships on the Korean economy. Conclusions - A higher economic policy uncertainty shows a greater economy recession of a country. Finally, the economic policy uncertainty of the Korea has an intensive impact on Korea economy. Particularly, the economic policy uncertainty of the US has a strong impact on distribution industry stock market in Korea.

A Study on the Modeling and Propagation to Evaluate Uncertainties in Measurement Results (측정결과의 불확도산정을 위한 모델링과 불확도 전파에 관한 연구)

  • 김종상;조남호
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.165-175
    • /
    • 2003
  • The concept of measurement uncertainty has been recognised for many years since "Guide to the Expression of Uncertainty in Measurement" was published 1993 by ISO. This study firstly propose the mathematical model to evaluate uncertainty considering the dispersion of samples because the mathematical model of a measurement is an important to evaluate uncertainty, and it must contains every quantify which contribute significantly to uncertainty in the measurement result. Secondly the standard uncertainty of the result of a measurement, namely combined standard uncertainty is evaluated using the law of propagation of uncertainty, what is termed in GUM method. In GUM method, a measurand is usually approximated by a linear function of its variables by the transforming its input quantities. Furthermore central limit theorem is applied to the input quantity. However the mathematical model of a measurement is generally not always a linearity function, and a distribution function of input or output quantity is not necessarily normal distribution. Then, in some cases GUM method is not favorable to evaluate a measurement uncertainty. Therefore this study propose a new method and its algorithm which use the Monte-carlo simulation to evaluate a measurement uncertainty in both case of linearity or non-linearity function. function.

  • PDF

Asymmetric Effects of Inflation Uncertainty on Facilities Investment (인플레이션 불확실성의 기업 설비투자에 대한 비대칭적 효과 분석)

  • Son, Minkyu;Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.123-132
    • /
    • 2014
  • Inflation uncertainty is known to have deleterious effects on facilities investment by disturbing the corporate decision on the opportunity cost of investment. In this paper, we test the validity of this hypothesis in Korea by estimating the inflation uncertainty with both a time-varing parameter model with GARCH disturbances and the relative price volatility and then, estimate the facilities investment equation which includes those uncertainty indicators. The uncertainty indexes estimated by the above-mentioned methods continue to fluctuate even after the inflation rate has dropped dramatically reflecting the structural changes of Korea's economy since the financial crisis in 1997. As a result of estimation of the investment equation by both OLS and GMM, we find the inflation uncertainty has a negative effect on facilities investment with a statistical significance. Moreover, by means of Markov-switching regression model utilized to verify the non-linearity of this relationship, we draw a conclusion that this negative effect of inflation uncertainty heightens asymmetrically during the downturn periods of business cycle.

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF