• 제목/요약/키워드: Model tests

검색결과 7,145건 처리시간 0.044초

Application of Digital Image Correlations (DIC) Technique on Geotechnical Reduced-Scale Model Tests

  • Tong, Bao;Yoo, Chungsik
    • 한국지반신소재학회논문집
    • /
    • 제21권1호
    • /
    • pp.33-48
    • /
    • 2022
  • This paper presents illustrative examples of the application of advanced digital image correlation (DIC) technology in the geotechnical laboratory tests, such as shallow footing test, trapdoor test, retaining wall test, and wide width tensile test on geogrid. The theoretical background of the DIC technique is first introduced together with fundamental equations. Relevant reduced-scale model tests were then performed using standard sand while applying the DIC technique to capture the movement of target materials during tests. A number of different approaches were tried to obtain optimized images that allow efficient tracking of material speckles based on the DIC technique. In order to increase the trackability of soil particles, a mix of dyed and regular sand was used during the model tests while specially devised painted speckles were applied to the geogrid. A series of images taken during tests were automatically processed and analyzed using software named VIC-2D that automatically generates displacements and strains. The soil deformation field and associated failure patterns obtained from the DIC technique for each test were found to compare fairly well with the theoretical ones. Also shown is that the DIC technique can also general strains appropriate to the wide width tensile test on geogrid, It is demonstrated in this study that the advanced DIC technique can be effectively used in monitoring the deformation and strain field during a reduced-scale geotechnical model laboratory test.

Applicability of Relative Effective Porosity Model to Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun;Suleiman, A.A.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.341-345
    • /
    • 2004
  • An attempt has been made in this study to evaluate an applicability of Relative Effective Porosity Model (REPM) as a method for estimating saturated hydraulic conductivity (K$_{s}$) for homogeneous coarse, medium, and fine sands. The saturated hydraulic conductivities obtained from REPM are converted into average linear velocities using Darcy's Law and compared with the results from experimental tracer tests for homogeneous coarse, medium, and fine sand layer. Two types of tracer tests analyses, analytical solution using CXTFIT and moment methods, are performed to obtain reasonable linear velocity range for each layer. For the coarse and medium sands, the converted average linear velocity from REPM is in the velocity range obtained from tracer tests. However, small difference between the results from REPM and tracer tests is found for the fine sands. These results show that REPM gives reasonable estimates of saturated hydraulic conductivity.y.

  • PDF

터널 모형실험에 대한 상사성 이론 정립에 관한 연구 (A study on the establishment of similarity rule for tunneling model tests)

  • 박시현;이석원
    • 한국터널지하공간학회 논문집
    • /
    • 제6권2호
    • /
    • pp.161-169
    • /
    • 2004
  • 본 연구는 터널 모형실험을 실시함에 있어서 실제 지반상태 및 터널구조물을 모형실험상에서 모사하기 위한 상사성 원리를 종합적으로 검토한 것이다. 이를 바탕으로 중력장에서 모형실험을 실시하는 경우에도 상사성을 만족시킬 수 있는 방법에 대해 이론적 연구를 수행하였으며 토사지반에 시공된 터널 사례에 대하여 모형실험시 라이닝 설정 방법에 관한 실험조건 수립과정을 정리하였다.

  • PDF

수평보강재로 보강된 터널 막장의 거동에 관한 축소 모형실험 (Reduced-Scale Model Tests on the Behavior of Tunnel Face Reinforced with longitudinal reinforcements)

  • 유충식;신현강
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.79-86
    • /
    • 2000
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.

  • PDF

수중 굴착사면의 안정해석 (The Stability Analysis of Submerged Excavated Slopes)

  • 이명원;이처근;김홍종;안광국;허열
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.147-154
    • /
    • 1997
  • The main purpose of this study is to investigate the failure surface in a soil mass by a excavation of the model ground. The failure mechanism of an earth structure is usually determined from field failure observations or from laboratory model tests at failure. To study the failure surface for the excavated slope, laboratory model tests were performed by changing the angle of the excavated slope and the ground condition. Results of the laboratory model tests were compared with those obtained with theoretical solutions using limit equilibrium analysis method. The results of model tests show that, there is a failure to create a straight line in the low angle of excavated surface and a create a circle as the angle increases. As the angle of excavated surface is increasing, the angle of the failure surface increases too. In the angle of the failure surface, the submerged ground is less than the dry ground at $3.2^{\circ}$.

  • PDF

준설토지반 가호안의 파이핑 안정성 평가를 위한 모형실험 (Model Tests of Piping Stability Estimation in dredging ground breakwater)

  • 김홍택;한연진;김종석;김태형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.689-696
    • /
    • 2008
  • In this study, seepage characteristics of breakwater in dredging ground evaluated for the piping stability estimation by scale model tests. For this, to estimated the seepage characteristics through the model tests and numerical analyses, the engineering stability on piping of breakwater evaluated based on scale model tests and numerical analyses results.

  • PDF

유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계(II) - 실내모형실험결과의 비교 - (Optimum Design of Piled Raft Foundations Using Genetic Algorithm(II) - Comparison with Laboratory Model Test Results -)

  • 김홍택;강인규;박순규;박정주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.379-386
    • /
    • 2001
  • Piled raft foundations are usually used to reduce total and differential settlements of superstructures. In the piled raft foundations, the raft is often on its own able to provide adequate bearing capacity and only few widely spaced piles are added to the foundation to keep settlements be1ow a certain limit. In this paper, experimental studies on the load sharing ratio between piles and raft are carried out. Also, for evaluating the application of optimum design technique using a genetic algorithm, optimal locations of files are compared with the results of laboratory model tests. from tile results of laboratory model tests, there are found that the load sharing ratio between files and raft is depended on the number of piles and stiffness of raft, and the optimal locations of piles became concentrated on the middle of rafts. From these results of laboratory model tests, the optimum technique using a genetic algorithm is acknowledged to the application in the piled raft.

  • PDF

게이지 R&R 연구에서 근사 F검정과 EMS를 이용한 측정 정밀도의 평가 (Evaluation of Measurement Precisions Using Approximate F Tests and EMS in the Gauge R&R Studies)

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제11권3호
    • /
    • pp.209-216
    • /
    • 2009
  • A development in method of evaluating the measurement precisions using approximate F tests and variance components from expected mean square (EMS) is investigated. The research proposes three-factor mixed measurement models with the fixed and random factors. Unrestricted and unconstrained design work was rarely studied, while restricted and constrained designs have been significantly discussed. The unrestricted and unconstrained designs assume to be an independence of interaction. The proposed evaluation method about the measurement precisions can be extended to four-factor random measurement model or mixed measurement model. The study also presents the three evaluation indexes of precisions such as R&RTR (Reproducibility & Repeatability-To-Total Precision Ratio), PTR (Precision-To-Tolerance Ratio), and SNR (Signal-To-Noise Ratio). Numerical examples are proposed to evaluate the approximate F tests with Satterthwaite degrees of freedom and three indexes using the measurement precisions from EMS.

원심모형실험에 의한 지하굴착 붕괴양상에 관한 계측 및 해석 (Monitoring & Analysis on Excavation Failure Modes by Centrifugal Model Experiment)

  • 허열;안광국;이처근
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.135-142
    • /
    • 1998
  • This paper is to investigate the failure surface and modes in a soil mass by a excavation of the model ground. To study the failure surface for the excavated slope, centrifugal model tests were performed by changing the angle of the excavated slope(50, 75, $90^{\circ}$) and the ground condition($D_r$=60, 90%, dry and submerged ground). Excavation was simulated during the centrifuge tests by operating a valve that allowed the zinc chloride solvent to drain from the excavation. Results of model tests were compared with those obtained with theoretical solutions using limit equilibrium analysis method. The results of model tests show that, there is a failure to create a straight line in the low angle of excavated surface and a create a circle as the angle increases. Also, as the angle of excavated surface is increasing, the angle of the failure surface increases. The failure length in the submerged ground increases approximately 1.10~1.34 times more than that of the dry ground.

  • PDF

Seismic performance evaluation of mid-rise shear walls: experiments and analysis

  • Parulekar, Y.M.;Reddy, G.R.;Singh, R.K.;Gopalkrishnan, N.;Ramarao, G.V.
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.291-312
    • /
    • 2016
  • Seismic performance evaluation of shear wall is essential as it is the major lateral load resisting member of a structure. The ultimate load and ultimate drift of the shear wall are the two most important parameters which need to be assessed experimentally and verified analytically. This paper comprises the results of monotonic tests, quasi-static cyclic tests and shake-table tests carried out on a midrise shear wall. The shear wall considered for the study is 1:5 scaled model of the shear wall of the internal structure of a reactor building. The analytical simulation of these tests is carried out using micro and macro modeling of the shear wall. This paper mainly consists of modification in the hysteretic macro model, developed for RC structural walls by Lestuzzi and Badoux in 2003. This modification is made by considering the stiffness degradation effect observed from the tests carried out and this modified model is then used for nonlinear dynamic analysis of the shear wall. The outcome of the paper gives the variation of the capacity, the failure patterns and the performance levels of the shear walls in all three types of tests. The change in the stiffness and the damping of the wall due to increased damage and cracking when subjected to seismic excitation is also highlighted in the paper.