• Title/Summary/Keyword: Model soil box test

Search Result 68, Processing Time 0.026 seconds

Analysis of Static and Dynamic Characteristics of Reinforced Roadbed Materials (철도 강화노반재료의 정ㆍ동적 특성 분석)

  • 황선근;신민호;이성혁;이시한;최찬용
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.34-41
    • /
    • 2000
  • The analysis of static and dynamic characteristics of reinforced roadbed materials was performed through model and laboratory tests. The strength characteristic of reinforced roadbed materials such as HMS-25 and soil were investigated through the unconfined axial compression test, the model soil box test and the combined resonant column and torsional shear test. The unconfined axial compression strength of HMS-25 shows a steady increasement in strength due to the chemical hardening reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects, such as, bearing capacity and settlement. The combined resonant column and torsional shear test result indicates that shear modulus of HMS-25 and soil increase with the power of 0.5 to the confining pressure and linear relationship to normalized shear modulus and damping ratio.

  • PDF

Applicability of Mini-Cone Penetration Test Used in a Soil Box

  • Sugeun Jeong;Minseo Moon;Daehyeon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.83-92
    • /
    • 2023
  • In this study, we conducted verification of key influencing factors during cone penetration testing using the developed Mini Cone Penetration Tester (Mini-CPT), and compared the experimental results with empirical formulas to validate the equipment. The Mini-CPT was designed to measure cone penetration resistance through a Strain Gauge, and the resistance values were calibrated using a Load Cell. Moreover, the influencing factors were verified using a model ground constituted in a soil box. The primary influencing factors examined were the boundary effect of the soil box, the distance between cone penetration points, and the cone penetration speed. For the verification of these factors, the experiment was conducted with the model ground having a relative density of 63.76% in the soil box. It was observed that the sidewall effect was considerably significant, and the cone penetration resistance measured at subsequent penetration points was higher due to the influence between penetration points. However, within the speed range considered, the effect of penetration speed was almost negligible. The measured cone penetration resistance was compared with predicted values obtained from literature research, and the results were found to be similar. It is anticipated that using the developed Mini-CPT for constructing model grounds in the laboratory will lead to more accurate geotechnical property data.

Evaluation of Applicability of HMS-25 as the Railroad Roadbed Material (철도 노반재로서의 수경성 입도 조정 고로슬래그(HMS-25)의 적용성 평가)

  • 황선근;이성혁;이시한;최찬용
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.157-165
    • /
    • 2000
  • The applicability and performance of HMS-25 as the railroad roadbed materials were evaluated through the model and laboratory tests. The uniaxial compression test of HMS-25, model soil box test, and combined resonant column and torsional shear test were performed for static and dynamic analysis of railroad roadbed. The uniaxial compression test result of HMS-25 shows steady increase in strength due to hardening chemical reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects such as bearing capacity and settlement. The combined resonant column and torsional that shear test result indicates that shear modulus of HMS-25 increases with the power of 0.5 to the confining pressure and that shear modulus increases with the increase of curing period.

  • PDF

Evaluation of Performance of the Railroad Roadbed Material by Model Fatigue lest (실내 모형반복실험에 의한 철도노반재료의 성능 평가)

  • 황선근;이성혁;이시한;최찬용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.191-198
    • /
    • 2000
  • Dynamic fatigue test is carried out using soil model box for the evaluation of performance of three different roadbed materials. Bearing capacity, settlement and mud pumping phenomenon of each roadbed materials as well as penetration of model ballast into the roadbeds are investigated. It was found that settlement of slag and crushed stone roadbed is smaller than the soil roadbed during dynamic fatigue test with same initial conditions.

  • PDF

The Evaluation on In-Situ Adaptability of Mono-layer Landfill Final Cover System (단층형 매립지 최종복토시스템의 현장 적용성 평가)

  • Yu, Chan;Yun, Sung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.73-80
    • /
    • 2006
  • The mono-layer cover system is composed of soils only as a filling material and various plants are planted on the surface to control the water balance in the cover system. In this paper, the mono-layer cover system was considered as an alternative landfill final cover system and developed a model that could utilize industrial by-product (especially, coal ash & phosphogypsum) as additive filling materials. The mixture of granite soil, coal ash, and phosphogypsum was placed as a cover material in a box constructed with cement. Laboratory tests were carried out to investigate the environmental effect on the utilization of coal ash & phosphogypsum and to determine the mxing ratio of each materials. In the leaching test, all materials showed lower heavy metal concentration than the threshold values of regulation. The optimum mixing ratio of materials which was applied to field model test was determined to soil (4) : coal ash (1) : phosphogypsum (1) on the volume base. Field model tests were continued from February to July, 2004 in the soil box that was constructed with cement block. It was verified that coal ash and phospogypsum mixed with soil was to be safe environmentally and the water balance of mono-layer cover system was reasonable.

Behavior of Underground Flexible Pipes Subject to Vehicle Load (차량하중을 받는 지중연성관의 거동특성)

  • 이대수;상현규;김경열
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various depth are compared using traditional formula, FEM analysis and model soil box test. The results show that theoretical values are more conservative in strain in comparison with model soil box test and FEM analysis. Considering the strain criteria - maximum 3.5%, flexible pipes can be buried at the depth of 40cm without additional soil improvement. From the result of this study, deformation formula compatible with the field condition was proposed.

Analysis of the Failure Mode in a Homogeneous Sandy Slope Using Model Test (모형실험을 이용한 균질한 사질토 사면의 붕괴형상 분석)

  • Song, Young-Suk;Park, Joon-Young;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • To experimentally investigate the variation of soil characteristics in slope during rainfall and the shape of slope failure, the model test was performed using soil box and artificial rainfall simulator. The model test of slope formed by the homogenous sand was performed, and the saturation pattern in the model slope due to rainfall infiltration was observed. The slope model with the inclination of 35° was set up on the slope of 30°, and the rainfall intensity of 50 mm/hr was applied in the test. The soil depth of 35 cm was selected by considering the size of soil box, and the TDR (time domain reflectometry) sensors were installed at various depths to investigate the change of soil characteristics with time. As the result of model test, the slope model during rainfall was saturated from the soil surface to the subsurface, and from the toe part to the crest part due to rainfall infiltration. That is, the toe part of slope was firstly saturated by rainfall infiltration, and then due to continuous rainfall the saturation range was enlarged from the toe part to the crest part in the slope model. The failure of slope model was started at the toe part of slope and then enlarged to the crest part, which is called as the retrogressive failure. At the end of slope failure, the collapsed area increased rapidly. Also, the mode of slope failure was rotational. Meanwhile, the slope failure was occurred when the matric suction in the slope was reached to the air entry value (AEV) estimated in soil-water characteristic curve (SWCC).

Shearing Characteristics of Aluminium Rods Using Plane Strain - Shear Box Test and Close Range Photogrammetric Technique (평면변형률 전단시험과 근거리 사진계측기법을 통한 알루미늄 봉의 전단특성)

  • Lee, Yong-Joo;Song, Ki-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.5-14
    • /
    • 2010
  • To simulate two-dimensional plane-strain conditions in the laboratory model test, the side frictional resistance between the soil and thick glass or plastic sheet of the soil container should be reduced as much as possible. However, in fact this side friction cannot be removed completely. In this paper, the ground model simulated as a multi-sized aluminium rod mixture was introduced to get rid of the side frictional resistance and applied to the laboratory shear box test. In addition, an application of the close range photogrammetric technique to the shear box test was validated. As a result, it was found that a mean value of dilation angle from the close range photogrammetry was close to the dilation angle defined by the curve of shear strain vs. volumetric strain.

An Experimental Study on Suppression of Cavity Development by Enlargement of Base Plate of Box-Culvert Installed at River Levee (하천제방 배수통문의 저판확폭을 통한 공동발생 억제기법 연구)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Lee, Dae-Young;Jin, Young-Ji
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Generally, the Box-Culvert in levee is destroyed by various reasons. Especially when Box-Culvert is installed over the pile foundation in soft ground, the failure occurrs for 1) the weakness of compaction in Box-Culvert side by the differential settlement between outer ground and inner soil prism, 2) hydraulic fracturing and disturbance of Box-Culvert side soil by the repeated acting of seepage pressure at flood time. Also the side of Box-Culvert is difficult to compact and the shear resistance is reduced by more than 1/3 for the reduction of friction caused by the difference of material property. In this study, a series of model tests are conducted for the analysis of the development mechanism of outer ground and inner soil prism by the differential settlement using the pile foundation in soft ground, and cavity suppressed technique is suggested by the analysis of base plate enlargement effect.

Field testing and numerical modeling of a low-fill box culvert under a flexible pavement subjected to traffic loading

  • Acharya, Raju;Han, Jie;Parsons, Robert L.;Brennan, James J.
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.625-638
    • /
    • 2016
  • This paper presents field study and numerical modeling results for a single-cell low-fill concrete box culvert under a flexible pavement subjected to traffic loading. The culvert in the field test was instrumented with displacement transducers to capture the deformations resulting from different combinations of static and traffic loads. A low-boy truck with a known axle configuration and loads was used to apply seven static load combinations and traffic loads at different speeds. Deflections under the culvert roof were measured during loading. Soil and pavement samples were obtained by drilling operation on the test site. The properties of the soil and pavement layers were determined in the laboratory. A 3-D numerical model of the culvert was developed using a finite difference program FLAC3D. Linear elastic models were used for the pavement layers and soil. The numerical results with the material properties determined in the laboratory were compared with the field test results. The observed deflections in the field test were generally smaller under moving loads than static loads. The maximum deflections measured during the static and traffic loads were 0.6 mm and 0.41 mm respectively. The deflections computed by the numerical method were in good agreement with those observed in the field test. The deflection profiles obtained from the field test and the numerical simulation suggest that the traffic load acted more like a concentrated load distributed over a limited area on the culvert. Elastic models for culverts, pavement layers, and surrounding soil are appropriate for numerical modeling of box culverts under loading for load rating purposes.